Time series forecasting -
with deep learning

Sigrid Keydana, Trivadis GmbH
2017-05-23

Time series forecasting:
the classical approach

sales

A time series

cola df <- read csv("monthly-sales-of-tasty-cola.csv", col names =

col types

cols(month = col date("%y-%m")))

c("month", "sales"), skip = 1,

ggplot(cola df, aes(x = month, y = sales)) + geom line() + ggtitle("Monthly sales of Tasty Cola")

Monthly sales of Tasty Cola

month

Another one ...

traffic df <- read csv("internet-traffic-data-in-bits-fr.csv", col names = c("hour", "bits"), skip
=1)
ggplot(traffic df, aes(x = hour, y = bits)) + geom line() + ggtitle("Internet traffic")

Internet traffic

50e+10-

seconds

And another.

win df <- read csv("winning-times-for-the-mens-400-m.csv", col names = c("year", "seconds"), skip =
1)
ggplot(win df, aes(x = year, y = seconds)) + geom line() + ggtitle("Men's 400m winning times")

Men's 400m winning times

year

Sometimes we may look at several time se-
ries together.

deaths df <- read csv("deaths-from-homicides-and-suicid.csv", col names = c("year", "homicide",
"suicide"), skip = 1)

deaths df <- gather(deaths df, key = 'type', value = 'deaths', homicide:suicide)
ggplot(deaths df, aes(x = year, y = deaths, color = type)) + geom line() +

scale _colour manual(values=c("green","blue")) + ggtitle("Australia: Homicides and suicides")

Australia: Homicides and suicides

Sometimes there’'s more to the picture than
we might think.

So far, this is nothing but a univariate time series of lynx population.

data("lynx")
autoplot(lynx) + ggtitle("Lynx population over time")

Lynx population over time

However ..

Source: Rudolfo's Usenet Animal Pictures Gallery (link no longer exists)

number

Lynx and hare

lynx_df <- read delim("lynxhare.csv", delim = ";") %>% select(year, hare, lynx) %>%
filter(between(year, 1890, 1945)) %>% mutate(hare = scale(hare), lynx = scale(lynx))
lynx _df <- gather(lynx df, key = 'species', value = 'number', hare:lynx)
ggplot(lynx _df, aes(x = year, y = number, color = species)) + geom line() +

scale colour manual(values=c("green","red")) + ggtitle("Lynx and hare populations over time")

Lynx and hare populations over time

year

species

Concepts in classical time series modeling

e Stationarity
e Decomposition

e Autocorrelation

Wait. This will be about deep learning

... why would the classical approach even matter?

Stationarity (1)

e \We want to forecast future values of a time series

e \We need fundamental statistical properties like mean, variance

e \What is the mean, or the variance, of a time series?

Stationarity (2)

e If atime series g stationary, then for all sthe distribution of (34, Y+ s
does not dependont

e By ergodicity, after we remove any trend and seasonality
effects, we may assume that the residual series is stationary in
the mean: p(t) =t

Differencing

e The trend is usually removed using differencing (forming the
differences of neighboring values)

set.seed(7777)
trend <- 1:100 + rnorm(100, sd = 5)
diff <- diff(trend)
df <- data frame(time id = 1:100,
trend = trend,
diff = c(NA, diff))
df <- df %>% gather(key = 'trend diff', value = 'value', -time id)
ggplot(df, aes(x = time id, y = value, color = trend diff)) + geom line()

tttttt

remainder

Time series decomposition

autoplot(stl(ts(cola df¢sales, frequency=12), s.window = 12))

I o T

Autocorrelation - Case 1: White noise

If consecutive values were not related, there'd be no way of
forecasting future values

sl <- ts(rnorm(100))

tsl <- autoplot(sl)
acfl <- ggfortify:::autoplot.acf(acf(sl, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =

0.95)
do.call('grid.arrange', list('grobs' = list(tsl, acfl), 'ncol' = 2, top = "White noise"))

White noise

Autocorrelation - Case 2: Linear trend

s2 <- ts(1:100 + rnorm(100, 2, 4))

ts2 <- autoplot(s2)
acf2 <- ggfortify:::autoplot.acf(acf(s2, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =

0.95)
do.call('grid.arrange', list('grobs' = list(ts2, acf2), 'ncol' = 2, top = "Series with a trend"))

Series with a trend

s3

Autocorrelation - Case 3: Seasonality

s3 <- ts(rep(1:5,20) + rnorm(100, sd= 0.5))

ts3 <- autoplot(s3)
acf3 <- ggfortify:::autoplot.acf(acf(s3, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =

0.95)
do.call('grid.arrange', list('grobs' = list(ts3, acf3), 'ncol' = 2, top = "Series with

seasonality"))

Series with seasonality

10-

ACF

Time Lag

Forecasting internet traffic,
the classical way

Here's the traffic time series again.

ggplot(traffic _df, aes(x = hour, y = bits)) + geom line() + ggtitle("Internet traffic")

446410~

remainder

Let’s first look at decomposition.

traffic_ts <- msts(traffic_df$bits,seasonal.periods = c(24, 24*7))
autoplot(stl(traffic_ts, s.window = 7 * 24))

How about autocorrelation?

ggfortify:::autoplot.acf(acf(traffic_ts, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =
0.95)

The usual ARIMA won't work...

arima_fit <- auto.arima(traffic_ts, stepwise = FALSE, max.order = 10, trace = TRUE)

ARIMA(0,0,0) with zero mean 1 60774.59
ARIMA(0,0,0) with non-zero mean : Inf *
ARIMA(0,0,0)(0,0,1)[168] with zero mean : Inf
ARIMA(0,0,0)(0,0,1)[168] with non-zero mean : Inf *

Error in myarima(x, order = c(i, d, j), seasonal = c(I, D, J), constant = (K == :

failed

root finding code

.. Will regression with ARIMA errors?

Let's add an indicator variable for whether it's weekend.

traffic df wd <- traffic df %>% mutate(weekend = if else(wday(hour) %in% c(7,1), 1, 0))
ggplot(traffic _df wd, aes(x=hour, y=bits, color=factor(weekend))) + geom point()

No.

This will run forever and you'll have to kill it.

arima_fit <- auto.arima(ts(traffic _df wd$bits, frequency = 24 * 7), xreg = traffic_df wd$weekend,
stepwise = FALSE, max.order = 10, trace = TRUE)

Trying TBATS

TBATS (“Exponential smoothing state space model with Box-Cox
transformation, ARMA errors, Trend and Seasonal components”)
does not fail...

But, look at the forecast.

tbats fit <- tbats(traffic ts)
plot(forecast(tbats fit, h=14%*24))

Forecasts from TBATS(0.007, {2,3}, -, {<24,6>, <168,4>})

‘l“ ‘ ”H '“ ""H Hl \ |\ H” “Mf’l,
|‘ il |> ‘Il m,
ﬂ.l\

I 1 \ \ 1
“‘ I |\ ‘ " n"]\'/l‘\ \‘ ‘.‘ “ I l“ "'\.‘ I 'l “' |"| “ w ‘ u"\”l ‘ "\ 'l‘\'ﬁ" | 'M

Will deep learning do any better for this
time series?

e |et'sstep back a little though.

e How does deep learning even do time series?

Enter: LSTM (Long Short Term Memory)

@ @ @ i) = g(WOx(® 4 ypt-1) (Input gate)
T I T f(t) = o(WHx®) 4 ugNpt-1)y (Forget gate)
A =1 o) = g(WOx®) 4 @ pt-1) (Output/Exposure gate)
A Ht; A E &0 = tanh(WOx® 4+ O-D) (New memory cell
i " ¢® = B o gt=1) 4 (B 5 &®) (Final memory cell)
é @ é B = o) o tanh(c(t))

| Source: Christopher Olah’s post on LSTM

New world, new rules?

e Do we still care about stationarity and decomposition?

e How does DL handle trends, or seasonality?

Let’'s compare ARIMA vs. LSTM on a little
set of benchmarks

e synthetic dataset, with trend only, test data out-of-range
e synthetic dataset, with trend only, test data in-range

e synthetic dataset, seasonal only

ARIMA vs. LSTM, Round 1.

Trend-only dataset, test
data out-of-range

value

Trend-only dataset

set.seed(7777)

trend train <- 11:110 + rnorm(100, sd = 2)

trend test <- 111:130 + rnorm(20, sd =2)

df <- data frame(time id = 1:120,
train = c(trend train, rep(NA, length(trend test))),
test = c(rep(NA, length(trend train)), trend test))

df <- df %% gather(key = 'train test', value = 'value', -time id)

ggplot(df, aes(x = time id, y = value, color = train test)) + geom line()

time_id

train_test
test

Trend-only dataset: Enter: ARIMA (1)

set.seed(7777)

trend train <- 11:110 + rnorm(100, sd = 2)
trend test <- 111:130 + rnorm(20, sd =2)
h<-1

n <- length(trend test) - h + 1

fit <- auto.arima(trend train)

re-estimate the model as new data arrives, as per https://robjhyndman.com/hyndsight/rolling-
forecasts/
order <- arimaorder(fit)
predictions <- matrix(0@, nrow=n, ncol=h)
lower <- matrix(@, nrow=n, ncol=h) # 95% prediction interval
upper <- matrix(0, nrow=n, ncol=h)
for(i in 1:n) {
X <- c(trend train[(1+i):length(trend train)], trend test[1:i])
refit <- Arima(x, order=order[1:3], seasonal=order[4:6])
predictions[i,] <- forecast(refit, h=h)$mean
lower[i,] <- unclass(forecast(refit, h=h)$lower)[,2]
upper[i,] <- unclass(forecast(refit, h=h)$upper)I[,2]
}

(test _rsme <- sqrt(sum((trend test - predictions)”2)))

[1] 5.31686

value

Trend-only dataset: Enter: ARIMA (2)

df <- data frame(time id = 1:120,
train = c(trend train, rep(NA, length(trend test)))
test = c(rep(NA, length(trend train)), trend test),
fitted = c(fit$fitted, rep(NA, length(trend test)))
preds = c(rep(NA, length(trend train)), predictions

lower = c(rep(NA, length(trend train)), lower),
upper = c(rep(NA, length(trend train)), upper))

df <- df %>% gather(key = 'type', value = 'value', train:preds)

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type)) + geom ribbon(aes(ymin =

lower, ymax = upper), alpha = 0.1)

’

),

preds

time_id

Trend-only dataset: Enter: LSTM

e |et'sfirst show what we have to do for time series prediction
with LSTM networks.

o We'll choose the Keras framework, and the R bindings provided
by kerasR.

Background: Data preparation for LSTM in
Keras (1)

Firstly, LSTMs work with a sliding window of input, so we need to
provide the data (train and test) in “window form”:

example given for training set, - do the same for test set

length(trend train)

lstm num timesteps <- 5

X train <- t(sapply(1l:(length(trend train) - lstm num timesteps), function(x) trend train[x:(x +
1stm num timesteps - 1)1))

dim(X train)

X train[1:5,]

[,1] [,2] [,3] [,4] [,5]
[1,] 7.24409 12.65291 12.39629 16.36328 14.67253
[2,] 12.65291 12.39629 16.36328 14.67253 18.59298
[3,] 12.39629 16.36328 14.67253 18.59298 19.70279
[4,] 16.36328 14.67253 18.59298 19.70279 17.41485
[5,] 14.67253 18.59298 19.70279 17.41485 17.67259

y train <- sapply((lstm num timesteps + 1):(length(trend train)), function(x) trend train[x])
y train[1:5]

[1] 18.59298 19.70279 17.41485 17.67259 23.13023

Background: Data preparation for LSTM in
Keras (2)

Keras LSTMs expect the input array to be shaped as (no. samples,
no. time steps, no. features)

example given for training set, - do the same for test set
add 3rd dimension
dim(X train)

[1] 95 5

X train <- expand dims(X train, axis = 2)
dim(X train)

[11 95 5 1

LSTM input shape: (samples, time steps, features)
num samples <- dim(X train)[1]

num_steps <- dim(X train)[2]

num features <- dim(X train)[3]

c(num_samples, num steps, num features)

[1] 95 5 1

Background: Keras - build the model

model <- Sequential()

model$add (LSTM(units = 4, input shape=c(num steps, num features)))
model$add (Dense(1))

keras compile(model, loss='mean squared error', optimizer='adam')

Background: Keras - fit the model!

not executed "live" ;-)
keras fit(model, X train, y train, batch size = 1, epochs = 500, verbose = 1)

We'll load the fitted model instead, and get
the predictions.

we'll load the fitted model instead...
keras fit(model, X train, y train, batch size = 1, epochs = 500, verbose = 1)

model <- keras load('trend nodiff.h5")
pred train <- keras predict(model, X train, batch size = 1)
pred test <-keras predict(model, X test, batch size = 1)

value

Hm. Whatever happened to predicting the
test data?

train = c(trend train, rep(NA, length(trend test))),
test = c(rep(NA, length(trend train)), trend test),
pred train = c(rep(NA, lstm num timesteps), pred train, rep(NA, length(trend test))),
pred test = c(rep(NA, length(trend train)), rep(NA, lstm num timesteps), pred test))
df <- df %% gather(key = 'type', value = 'value', train:pred test)
ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

e

time_id

Anything we could have done to our data to
make this work better?

e What if we had worked with the value differences, instead of the
original values (learning from ARIMA & co.)?

e Or eventherelative differences?
e What if we had scaled the data?

What it we work with differenced data?

set.seed(7777)
trend train <- 11:110 + rnorm(100, sd = 2)
trend test <- 111:130 + rnorm(20, sd =2)

trend train start <- trend train[1]
trend test start <- trend test[1]

trend train diff <- diff(trend train)
trend test diff <- diff(trend test)
trend test diff

[1] 4.2235013 -3.5657054 4.9708362 -3.8893841 5.9185922 0.1646659
[7] 1.4168194 2.8387000 -2.4343835 2.6326364 1.6875305 -1.6268218
[13] 2.4204479 3.5124616 -2.6026255 -0.8882357 4.0684488 -0.3788169
[19] ©0.7841282

1stm _num_timesteps <- 4

Get the predictions

we'll load the fitted model instead...

model <- keras load('trend diff.h5")

pred train <- keras predict(model, X train, batch size = 1)
pred test <-keras predict(model, X test, batch size = 1)

"undiff"

pred train undiff <- pred train + trend train[(lstm _num_timesteps+1):(length(trend train)-1)]
pred test undiff <- pred test + trend test[(lstm num timesteps+1):(length(trend test)-1)]

value

Differencing makes the difference...

df <- data frame(time id = 1:120,
train = c(trend train, rep(NA, length(trend test))),
test = c(rep(NA, length(trend train)), trend test),
pred train = c(rep(NA, lstm num_timesteps+1), pred train undiff, rep(NA, length(trend test))),
pred test = c(rep(NA, length(trend train)), rep(NA, lstm num timesteps+l), pred test undiff))
df <- df %>% gather(key = 'type', value = 'value', train:pred test)
(test rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps - 1) -
pred test undiff)”"2)))

[1] 9.231277

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

'
L

time._id

Just for completeness, let’s try relative dif-
ferences as well

set.seed(7777)
trend train <- 11:110 + rnorm(100, sd = 2)
trend test <- 111:130 + rnorm(20, sd =2)

trend train start <- trend train[1]
trend test start <- trend test[1]

trend train diff <- diff(trend train)/trend train[-length(trend train)]
trend test diff <- diff(trend test)/trend test[-length(trend test)]
trend test diff

[1] 0.038423558 -0.031238910 0.044953465 -0.033660270 0.053006039
[6] 0.001400490 0.012033246 0.023822810 -0.019954355 0.022018781
[11] 0.013810047 -0.013131880 0.019798102 0.028172487 -0.020302958
[16] -0.007072681 0.032626255 -0.002941878 0.006107476

1stm num timesteps <- 4

Get the predictions

we'll load the fitted model instead...
model <- keras load('trend reldiff.h5")

pred train <- keras predict(model, X train, batch size = 1)

pred test <-keras predict(model, X test, batch size = 1)

pred train undiff <- pred train * trend train[(lstm _num timesteps+1):(length(trend train)-1)] +
trend train[(lstm _num timesteps+1):(length(trend train)-1)]

pred test undiff <- pred test * trend test[(lstm num timesteps+1):(length(trend test)-1)] +
trend test[(lstm num timesteps+1):(length(trend test)-1)]

value

Relative differences: results

df <- data frame(time id = 1:120,
train = c(trend train, rep(NA, length(trend test))),
test = c(rep(NA, length(trend train)), trend test),
pred train = c(rep(NA, lstm num timesteps+1), pred train undiff, rep(NA, length(trend test))),
pred test = c(rep(NA, length(trend train)), rep(NA, lstm num timesteps+1l), pred test undiff))
df <- df %>% gather(key = 'type', value = 'value', train:pred test)
(test rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps - 1) -
pred test undiff)”"2)))

[1] 10.35424

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

'

time._id

What if we difference AND normalize?

set.seed(7777)
trend train <- 11:110 + rnorm(100, sd = 2)
trend test <- 111:130 + rnorm(20, sd =2)

trend train start <- trend train[1]
trend test start <- trend test[1]

trend train diff <- diff(trend train)
trend test diff <- diff(trend test)

minval <- min(trend train diff)
maxval <- max(trend train diff)

normalize <- function(vec, min, max) {
(vec-min) / (max-min)

}

denormalize <- function(vec,min,max) {
vec * (max - min) + min

}

trend train diff <- normalize(trend train diff, minval, maxval)
trend test diff <- normalize(trend test diff, minval, maxval)

lstm num timesteps <- 4

Get the predictions

we'll load the fitted model instead...

model <- keras load('trend diffnorm.h5")

pred train <- keras predict(model, X train, batch size = 1)
pred test <-keras predict(model, X test, batch size = 1)

pred train <- denormalize(pred train, minval, maxval)
pred test <- denormalize(pred test, minval, maxval)

pred train undiff <- pred train + trend train[(lstm num timesteps+1):(length(trend train)-1)]
pred test undiff <- pred test + trend test[(lstm num timesteps+1):(length(trend test)-1)]

value

Difference and normalize: results

df <- data frame(time id = 1:120,
train = c(trend train, rep(NA, length(trend test))),
test = c(rep(NA, length(trend train)), trend test),
pred train = c(rep(NA, lstm num timesteps+1), pred train undiff, rep(NA, length(trend test))),
pred test = c(rep(NA, length(trend train)), rep(NA, lstm num timesteps+1l), pred test undiff))
df <- df %>% gather(key = 'type', value = 'value', train:pred test)
(test rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps - 1) -
pred test undiff)”"2)))

[1] 6.662725

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

'

time._id

ARIMA vs. LSTM, Round 2;

Trend-only dataset, test
data in-range

Would anything change if the test data were
in the range already known by the model?

set.seed(7777)

trend train <- 11:110 + rnorm(100, sd = 2)

trend test <- 31:50 + rnorm(20, sd =2)

df <- data frame(time id = 1:120,

train = c(trend train, rep(NA, length(trend test))),

test = c(rep(NA, length(trend train)), trend test))

df <- df %% gather(key = 'train test', value = 'value', -time id)
ggplot(df, aes(x = time id, y = value, color = train test)) + geom line()

vvvvvvvvvv

(((((

Trend-only dataset, test data in-range: Enter:
ARIMA (1)

set.seed(7777)

trend train <- 11:110 + rnorm(100, sd = 2)

trend_test <- 31:50 + rnorm(20, sd =2)

fit <- auto.arima(trend train)

order <- arimaorder(fit)

fit on the test set

refit <- Arima(trend test, order=order[1:3], seasonal=order[4:6])
predictions <- refit$fitted

(test rsme <- sqrt(sum((trend test - predictions)”2)))

[1] 9.629612

value

Trend-only dataset, test data in-range: Enter:
ARIMA (2)

df <- data frame(time id = 1:120,

train = c(trend _train, rep(NA, length(trend test)))
test = c(rep(NA, length(trend train)), trend test),
fitted = c(fit$fitted, rep(NA, length(trend test))),

preds = c(rep(NA, length(trend train)), predictions))

df <- df %>% gather(key = 'type', value 'value', train:preds)
ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

’

type

time_id

Trend-only dataset, test data in-range: Enter:
LSTM (no differencing)

(test _rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps) - pred test)"2)))
[1] 9.254975

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

nnnnnn

Does it get even better with differencing?

(test rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps - 1) -
pred test undiff)”2)))

[1] 6.394894

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

And with relative differencing?

(test rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps - 1) -
pred test undiff)”2)))

[1] 7.491432

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

Finally, what about both differencing and
normalizing?

(test rsme <- sqrt(sum((tail(trend test,length(trend test) - lstm num timesteps - 1) -
pred_test undiff)~"2)))

[1] 6.710867

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

pred_test

ttttt

ARIMA vs. LSTM, Round 3:
seasonal-only dataset

value

Seasonal-only dataset

set.seed(7777)

seasonal train <- rep(1l:7, times =1
seasonal test <- rep(l:7, times = 3)
df <- data frame(time id = 1:112,
train = c(seasonal train, rep(NA, length(seasonal test))),

test = c(rep(NA, length(seasonal train)), seasonal test))

df <- df %% gather(key = 'train test', value = 'value', -time id)
ggplot(df, aes(x = time id, y = value, color = train test)) + geom line()

3) + rnorm(91, sd=0.2)
+ rnorm(21, sd=0.2)

time_id

train_test

Seasonal-only dataset; Enter: ARIMA (1)

set.seed(7777)

seasonal train <- rep(1l:7, times =1
seasonal test <- rep(l:7, times = 3)
h<-1

n <- length(seasonal test) - h + 1
fit <- auto.arima(seasonal train)
order <- arimaorder(fit)

refit <- Arima(seasonal test, order=order[1:3], seasonal=order[4:6])
predictions <- refit$fitted

(test rsme <- sqrt(sum((seasonal test - predictions)”2)))

3) + rnorm(91, sd=0.2)
+ rnorm(21, sd=0.2)

[1] 4.136755

value

Seasonal-only dataset; enter; ARIMA (2)

df <- data frame(time id = 1:112,
train = c(seasonal train, rep(NA, length(seasonal test))),
test = c(rep(NA, length(seasonal train)), seasonal test),
fitted = c(fit$fitted, rep(NA, length(seasonal test))),
preds = c(rep(NA, length(seasonal train)), predictions))
df <- df %>% gather(key = 'type', value = 'value', train:preds)
ggplot(df, aes(x = time id, y = value)) + geom line(aes(color =

time_id

type))

type

Seasonal-only dataset; Enter; LSTM (no dif-
ferencing)

(test rsme <- sqrt(sum((tail(seasonal test,length(seasonal test) - lstm num timesteps) -
pred test)”2)))

[1] 0.6890056

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

pred_test

mmmmm

Does it get even better with differencing?
(How could it -))

(test rsme <- sqrt(sum((tail(seasonal test,length(seasonal test) - 1stm _num_timesteps
pred test undiff)”2)))

- 1) -

[1] 1.005745

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

pred_test

mmmmm

Or with relative differencinscg (for complete-
ness’ sake):

(test rsme <- sqrt(sum((tail(seasonal test,length(seasonal test) - 1stm _num_timesteps
pred test undiff)”2)))

- 1) -

[1] 0.5890867

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

pred_test

mmmmm

Finally, what about both differencing and
normalizing

(test rsme <- sqrt(sum((tail(seasonal test,length(seasonal test) - 1stm _num_timesteps
pred test undiff)”2)))

- 1) -

[1] 1.064543

ggplot(df, aes(x = time id, y = value)) + geom line(aes(color = type))

pred_test

mmmmm

Benchmark: Remarks and conclusions

e \We've used a very basic setup for the LSTM

m just one layer

m no experiments with number of units, optimization routines,
activation functions...

m no use of dropout, regularization, weight decay...

m not making use of Keras stateful LSTM

e \We've only compared both methods on a rolling forecast (not
forecasting several periods into the future)

Aside (1): Stateful RNNs in Keras

e With stateful RNNs, states computed for the samples in one
batch will be reused as initial states for the respective samples in
the next batch

e “Makes sense” for a time series, as long as the data is
reformatted or batch_size=1is used

e Presupposes batches arriving in the same order in every epoch
(set shuffle = False)

e Not currently implemented in KerasR - time for some Python...

Demo: Stateful LSTM in
Keras

Aside (2): Multi-step-ahead forecasts in
Keras

e Multi-step-ahead forecasts using LSTM can be done in a number
of ways:

m build predictions on earlier predictions (“low end”)

m seq2seq architecture (“high end” not currently available out
of the box in Keras)

m using TimeDistributed layer (not currently implemented in
KerasR)

Demo: Multi-step ahead
forecasting in Keras using
TimeDistributed

Finally...

Forecasting internet traffic
using LSTM

Here, again, is our time series...

ggplot(traffic _df, aes(x = hour, y = bits)) + geom line() + ggtitle("Internet traffic")

Forecasting internet traffic with LSTM
We apply first-order differencing and normalize the data.

traffic_train <- traffic df$bits[1:800]
traffic _test <- traffic df$bits[801:nrow(traffic df)]

traffic train start <- traffic train[1]
traffic test start <- traffic test[1]

traffic_train diff <- diff(traffic_train)
traffic_test diff <- diff(traffic_test)

minval <- min(traffic train diff)
maxval <- max(traffic train diff)

normalize <- function(vec, min, max) {
(vec-min) / (max-min)
b

denormalize <- function(vec,min,max) {
vec * (max - min) + min

}

traffic train diff <- normalize(traffic train diff, minval, maxval)
traffic test diff <- normalize(traffic test diff, minval, maxval)

We choose 7*24=168 for the number of timesteps.

Istm num timesteps <- 7*24

555555

~~~~~~

ggplot(df, aes

|

(x

And the results? ... Wow!

= time_id, y = value)) + geom line(aes(color = type))

I

Prgp



The end?

e Thisis more like a beginning
e |ots of things to explore...
m experiment with parameters, architectures...

m experiment with different datasets...

e Have fun!

Thanks for your attention!!



