
Time series forecasting -Time series forecasting -
with deep learningwith deep learning

Sigrid Keydana, Trivadis GmbH
2017-05-23

Time series forecasting:Time series forecasting:
the classical approachthe classical approach

A time seriesA time series

cola_df <- read_csv("monthly-sales-of-tasty-cola.csv", col_names = c("month", "sales"), skip = 1,
col_types = cols(month = col_date("%y-%m")))

ggplot(cola_df, aes(x = month, y = sales)) + geom_line() + ggtitle("Monthly sales of Tasty Cola")

Another one ...Another one ...

traffic_df <- read_csv("internet-traffic-data-in-bits-fr.csv", col_names = c("hour", "bits"), skip
= 1)
ggplot(traffic_df, aes(x = hour, y = bits)) + geom_line() + ggtitle("Internet traffic")

And another.And another.

win_df <- read_csv("winning-times-for-the-mens-400-m.csv", col_names = c("year", "seconds"), skip =
1)
ggplot(win_df, aes(x = year, y = seconds)) + geom_line() + ggtitle("Men's 400m winning times")

Sometimes we may look at several time se‐Sometimes we may look at several time se‐
ries together.ries together.

deaths_df <- read_csv("deaths-from-homicides-and-suicid.csv", col_names = c("year", "homicide",
"suicide"), skip = 1)
deaths_df <- gather(deaths_df, key = 'type', value = 'deaths', homicide:suicide)
ggplot(deaths_df, aes(x = year, y = deaths, color = type)) + geom_line() +
scale_colour_manual(values=c("green","blue")) + ggtitle("Australia: Homicides and suicides")

Sometimes there's more to the picture thanSometimes there's more to the picture than
we might think.we might think.

So far, this is nothing but a univariate time series of lynx population.

data("lynx")
autoplot(lynx) + ggtitle("Lynx population over time")

However ...However ...

Source: Rudolfo’s Usenet Animal Pictures Gallery (link no longer exists)

Lynx and hareLynx and hare
lynx_df <- read_delim("lynxhare.csv", delim = ";") %>% select(year, hare, lynx) %>%
filter(between(year, 1890, 1945)) %>% mutate(hare = scale(hare), lynx = scale(lynx))
lynx_df <- gather(lynx_df, key = 'species', value = 'number', hare:lynx)
ggplot(lynx_df, aes(x = year, y = number, color = species)) + geom_line() +
scale_colour_manual(values=c("green","red")) + ggtitle("Lynx and hare populations over time")

Concepts in classical time series modelingConcepts in classical time series modeling

Stationarity

Decomposition

Autocorrelation

Wait. This will be about deep learningWait. This will be about deep learning

… why would the classical approach even matter?

Stationarity (1)Stationarity (1)

We want to forecast future values of a time series

We need fundamental statistical properties like mean, variance
…

What is the mean, or the variance, of a time series?

Stationarity (2)Stationarity (2)

If a time series is stationary, then for all , the distribution of (,…,)
does not depend on .

By ergodicity, after we remove any trend and seasonality
effects, we may assume that the residual series is stationary in
the mean:

yt s yt yt+s

t

μ(t) = t

DifferencingDifferencing
The trend is usually removed using differencing (forming the
differences of neighboring values)

set.seed(7777)
trend <- 1:100 + rnorm(100, sd = 5)
diff <- diff(trend)
df <- data_frame(time_id = 1:100,

trend = trend,
diff = c(NA, diff))

df <- df %>% gather(key = 'trend_diff', value = 'value', -time_id)
ggplot(df, aes(x = time_id, y = value, color = trend_diff)) + geom_line()

Time series decompositionTime series decomposition

autoplot(stl(ts(cola_df$sales, frequency=12), s.window = 12))

Autocorrelation - Case 1: White noiseAutocorrelation - Case 1: White noise
If consecutive values were not related, there'd be no way of

forecasting future values

s1 <- ts(rnorm(100))
ts1 <- autoplot(s1)
acf1 <- ggfortify:::autoplot.acf(acf(s1, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =
0.95)
do.call('grid.arrange', list('grobs' = list(ts1, acf1), 'ncol' = 2, top = "White noise"))

Autocorrelation - Case 2: Linear trendAutocorrelation - Case 2: Linear trend

s2 <- ts(1:100 + rnorm(100, 2, 4))
ts2 <- autoplot(s2)
acf2 <- ggfortify:::autoplot.acf(acf(s2, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =
0.95)
do.call('grid.arrange', list('grobs' = list(ts2, acf2), 'ncol' = 2, top = "Series with a trend"))

Autocorrelation - Case 3: SeasonalityAutocorrelation - Case 3: Seasonality

s3 <- ts(rep(1:5,20) + rnorm(100, sd= 0.5))
ts3 <- autoplot(s3)
acf3 <- ggfortify:::autoplot.acf(acf(s3, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =
0.95)
do.call('grid.arrange', list('grobs' = list(ts3, acf3), 'ncol' = 2, top = "Series with
seasonality"))

Forecasting internet traffic,Forecasting internet traffic,
the classical waythe classical way

Here's the traffic time series again.Here's the traffic time series again.

ggplot(traffic_df, aes(x = hour, y = bits)) + geom_line() + ggtitle("Internet traffic")

Let's first look at decomposition.Let's first look at decomposition.

traffic_ts <- msts(traffic_df$bits,seasonal.periods = c(24, 24*7))
autoplot(stl(traffic_ts, s.window = 7 * 24))

How about autocorrelation?How about autocorrelation?

ggfortify:::autoplot.acf(acf(traffic_ts, plot = FALSE), conf.int.fill = '#00cccc', conf.int.value =
0.95)

The usual ARIMA won't work...The usual ARIMA won't work...

arima_fit <- auto.arima(traffic_ts, stepwise = FALSE, max.order = 10, trace = TRUE)

 ARIMA(0,0,0) with zero mean : 60774.59
 ARIMA(0,0,0) with non-zero mean : Inf *
 ARIMA(0,0,0)(0,0,1)[168] with zero mean : Inf
 ARIMA(0,0,0)(0,0,1)[168] with non-zero mean : Inf *

Error in myarima(x, order = c(i, d, j), seasonal = c(I, D, J), constant = (K == : root finding code
failed

... will regression with ARIMA errors?... will regression with ARIMA errors?

Let's add an indicator variable for whether it's weekend.

traffic_df_wd <- traffic_df %>% mutate(weekend = if_else(wday(hour) %in% c(7,1), 1, 0))
ggplot(traffic_df_wd, aes(x=hour, y=bits, color=factor(weekend))) + geom_point()

No.No.

This will run forever and you'll have to kill it.

arima_fit <- auto.arima(ts(traffic_df_wd$bits, frequency = 24 * 7), xreg = traffic_df_wd$weekend,
stepwise = FALSE, max.order = 10, trace = TRUE)

Trying TBATSTrying TBATS
TBATS (“Exponential smoothing state space model with Box-Cox
transformation, ARMA errors, Trend and Seasonal components”)

does not fail…

But, look at the forecast.

tbats_fit <- tbats(traffic_ts)
plot(forecast(tbats_fit, h=14*24))

Will deep learning do any better for thisWill deep learning do any better for this
time series?time series?

Let's step back a little though.

How does deep learning even do time series?

Enter: LSTM (Long Short Term Memory)Enter: LSTM (Long Short Term Memory)

Source: Christopher Olah’s post on LSTM

New world, new rules?New world, new rules?

Do we still care about stationarity and decomposition?

How does DL handle trends, or seasonality?

Let's compare ARIMA vs. LSTM on a littleLet's compare ARIMA vs. LSTM on a little
set of benchmarksset of benchmarks

synthetic dataset, with trend only, test data out-of-range

synthetic dataset, with trend only, test data in-range

synthetic dataset, seasonal only

ARIMA vs. LSTM, Round 1:ARIMA vs. LSTM, Round 1:
Trend-only dataset, testTrend-only dataset, test

data out-of-rangedata out-of-range

Trend-only datasetTrend-only dataset

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 111:130 + rnorm(20, sd =2)
df <- data_frame(time_id = 1:120,

train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test))

df <- df %>% gather(key = 'train_test', value = 'value', -time_id)
ggplot(df, aes(x = time_id, y = value, color = train_test)) + geom_line()

Trend-only dataset: Enter: ARIMA (1)Trend-only dataset: Enter: ARIMA (1)

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 111:130 + rnorm(20, sd =2)
h <- 1
n <- length(trend_test) - h + 1
fit <- auto.arima(trend_train)

re-estimate the model as new data arrives, as per https://robjhyndman.com/hyndsight/rolling-
forecasts/
order <- arimaorder(fit)
predictions <- matrix(0, nrow=n, ncol=h)
lower <- matrix(0, nrow=n, ncol=h) # 95% prediction interval
upper <- matrix(0, nrow=n, ncol=h)
for(i in 1:n) {
x <- c(trend_train[(1+i):length(trend_train)], trend_test[1:i])
refit <- Arima(x, order=order[1:3], seasonal=order[4:6])
predictions[i,] <- forecast(refit, h=h)$mean
lower[i,] <- unclass(forecast(refit, h=h)$lower)[,2]
upper[i,] <- unclass(forecast(refit, h=h)$upper)[,2]

}

(test_rsme <- sqrt(sum((trend_test - predictions)^2)))

[1] 5.31686

Trend-only dataset: Enter: ARIMA (2)Trend-only dataset: Enter: ARIMA (2)

df <- data_frame(time_id = 1:120,
train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test),
fitted = c(fit$fitted, rep(NA, length(trend_test))),
preds = c(rep(NA, length(trend_train)), predictions),
lower = c(rep(NA, length(trend_train)), lower),
upper = c(rep(NA, length(trend_train)), upper))

df <- df %>% gather(key = 'type', value = 'value', train:preds)
ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type)) + geom_ribbon(aes(ymin =
lower, ymax = upper), alpha = 0.1)

Trend-only dataset: Enter: LSTMTrend-only dataset: Enter: LSTM

Let's first show what we have to do for time series prediction
with LSTM networks.

We'll choose the framework, and the R bindings provided
by .

Keras
kerasR

Background: Data preparation for LSTM inBackground: Data preparation for LSTM in
Keras (1)Keras (1)

Firstly, LSTMs work with a sliding window of input, so we need to
provide the data (train and test) in “window form”:

example given for training set, - do the same for test set
length(trend_train)
lstm_num_timesteps <- 5
X_train <- t(sapply(1:(length(trend_train) - lstm_num_timesteps), function(x) trend_train[x:(x +
lstm_num_timesteps - 1)]))
dim(X_train)
X_train[1:5,]

 [,1] [,2] [,3] [,4] [,5]
[1,] 7.24409 12.65291 12.39629 16.36328 14.67253
[2,] 12.65291 12.39629 16.36328 14.67253 18.59298
[3,] 12.39629 16.36328 14.67253 18.59298 19.70279
[4,] 16.36328 14.67253 18.59298 19.70279 17.41485
[5,] 14.67253 18.59298 19.70279 17.41485 17.67259

y_train <- sapply((lstm_num_timesteps + 1):(length(trend_train)), function(x) trend_train[x])
y_train[1:5]

[1] 18.59298 19.70279 17.41485 17.67259 23.13023

Background: Data preparation for LSTM inBackground: Data preparation for LSTM in
Keras (2)Keras (2)

Keras LSTMs expect the input array to be shaped as (no. samples,
no. time steps, no. features)

example given for training set, - do the same for test set
add 3rd dimension
dim(X_train)

[1] 95 5

X_train <- expand_dims(X_train, axis = 2)
dim(X_train)

[1] 95 5 1

LSTM input shape: (samples, time steps, features)
num_samples <- dim(X_train)[1]
num_steps <- dim(X_train)[2]
num_features <- dim(X_train)[3]
c(num_samples, num_steps, num_features)

[1] 95 5 1

Background: Keras - build the modelBackground: Keras - build the model

model <- Sequential()
model$add(LSTM(units = 4, input_shape=c(num_steps, num_features)))
model$add(Dense(1))
keras_compile(model, loss='mean_squared_error', optimizer='adam')

Background: Keras - fit the model!Background: Keras - fit the model!

not executed "live" ;-)
keras_fit(model, X_train, y_train, batch_size = 1, epochs = 500, verbose = 1)

We'll load the fitted model instead, and getWe'll load the fitted model instead, and get
the predictions.the predictions.

we'll load the fitted model instead...
keras_fit(model, X_train, y_train, batch_size = 1, epochs = 500, verbose = 1)

model <- keras_load('trend_nodiff.h5')
pred_train <- keras_predict(model, X_train, batch_size = 1)
pred_test <-keras_predict(model, X_test, batch_size = 1)

Hm. Whatever happened to predicting theHm. Whatever happened to predicting the
test data?test data?

df <- data_frame(time_id = 1:120,
train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test),
pred_train = c(rep(NA, lstm_num_timesteps), pred_train, rep(NA, length(trend_test))),
pred_test = c(rep(NA, length(trend_train)), rep(NA, lstm_num_timesteps), pred_test))

df <- df %>% gather(key = 'type', value = 'value', train:pred_test)
ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Anything we could have done to our data toAnything we could have done to our data to
make this work better?make this work better?

What if we had worked with the value differences, instead of the
original values (learning from ARIMA & co.)?

Or even the relative differences?

What if we had scaled the data?

What if we work with differenced data?What if we work with differenced data?

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 111:130 + rnorm(20, sd =2)

trend_train_start <- trend_train[1]
trend_test_start <- trend_test[1]

trend_train_diff <- diff(trend_train)
trend_test_diff <- diff(trend_test)
trend_test_diff

 [1] 4.2235013 -3.5657054 4.9708362 -3.8893841 5.9185922 0.1646659
 [7] 1.4168194 2.8387000 -2.4343835 2.6326364 1.6875305 -1.6268218
[13] 2.4204479 3.5124616 -2.6026255 -0.8882357 4.0684488 -0.3788169
[19] 0.7841282

lstm_num_timesteps <- 4

Get the predictionsGet the predictions

we'll load the fitted model instead...
model <- keras_load('trend_diff.h5')
pred_train <- keras_predict(model, X_train, batch_size = 1)
pred_test <-keras_predict(model, X_test, batch_size = 1)

"undiff"
pred_train_undiff <- pred_train + trend_train[(lstm_num_timesteps+1):(length(trend_train)-1)]
pred_test_undiff <- pred_test + trend_test[(lstm_num_timesteps+1):(length(trend_test)-1)]

Differencing makes the difference...Differencing makes the difference...
df <- data_frame(time_id = 1:120,

train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test),
pred_train = c(rep(NA, lstm_num_timesteps+1), pred_train_undiff, rep(NA, length(trend_test))),
pred_test = c(rep(NA, length(trend_train)), rep(NA, lstm_num_timesteps+1), pred_test_undiff))

df <- df %>% gather(key = 'type', value = 'value', train:pred_test)
(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 9.231277

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Just for completeness, let's try relative dif‐Just for completeness, let's try relative dif‐
ferences as wellferences as well

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 111:130 + rnorm(20, sd =2)

trend_train_start <- trend_train[1]
trend_test_start <- trend_test[1]

trend_train_diff <- diff(trend_train)/trend_train[-length(trend_train)]
trend_test_diff <- diff(trend_test)/trend_test[-length(trend_test)]
trend_test_diff

 [1] 0.038423558 -0.031238910 0.044953465 -0.033660270 0.053006039
 [6] 0.001400490 0.012033246 0.023822810 -0.019954355 0.022018781
[11] 0.013810047 -0.013131880 0.019798102 0.028172487 -0.020302958
[16] -0.007072681 0.032626255 -0.002941878 0.006107476

lstm_num_timesteps <- 4

Get the predictionsGet the predictions
we'll load the fitted model instead...
model <- keras_load('trend_reldiff.h5')

pred_train <- keras_predict(model, X_train, batch_size = 1)
pred_test <-keras_predict(model, X_test, batch_size = 1)
pred_train_undiff <- pred_train * trend_train[(lstm_num_timesteps+1):(length(trend_train)-1)] +
trend_train[(lstm_num_timesteps+1):(length(trend_train)-1)]
pred_test_undiff <- pred_test * trend_test[(lstm_num_timesteps+1):(length(trend_test)-1)] +
trend_test[(lstm_num_timesteps+1):(length(trend_test)-1)]

Relative differences: resultsRelative differences: results
df <- data_frame(time_id = 1:120,

train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test),
pred_train = c(rep(NA, lstm_num_timesteps+1), pred_train_undiff, rep(NA, length(trend_test))),
pred_test = c(rep(NA, length(trend_train)), rep(NA, lstm_num_timesteps+1), pred_test_undiff))

df <- df %>% gather(key = 'type', value = 'value', train:pred_test)
(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 10.35424

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

What if we difference AND normalize?What if we difference AND normalize?

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 111:130 + rnorm(20, sd =2)

trend_train_start <- trend_train[1]
trend_test_start <- trend_test[1]

trend_train_diff <- diff(trend_train)
trend_test_diff <- diff(trend_test)

minval <- min(trend_train_diff)
maxval <- max(trend_train_diff)

normalize <- function(vec, min, max) {
(vec-min) / (max-min)

}
denormalize <- function(vec,min,max) {
vec * (max - min) + min

}

trend_train_diff <- normalize(trend_train_diff, minval, maxval)
trend_test_diff <- normalize(trend_test_diff, minval, maxval)

lstm_num_timesteps <- 4

Get the predictionsGet the predictions
we'll load the fitted model instead...
model <- keras_load('trend_diffnorm.h5')
pred_train <- keras_predict(model, X_train, batch_size = 1)
pred_test <-keras_predict(model, X_test, batch_size = 1)

pred_train <- denormalize(pred_train, minval, maxval)
pred_test <- denormalize(pred_test, minval, maxval)

pred_train_undiff <- pred_train + trend_train[(lstm_num_timesteps+1):(length(trend_train)-1)]
pred_test_undiff <- pred_test + trend_test[(lstm_num_timesteps+1):(length(trend_test)-1)]

Difference and normalize: resultsDifference and normalize: results
df <- data_frame(time_id = 1:120,

train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test),
pred_train = c(rep(NA, lstm_num_timesteps+1), pred_train_undiff, rep(NA, length(trend_test))),
pred_test = c(rep(NA, length(trend_train)), rep(NA, lstm_num_timesteps+1), pred_test_undiff))

df <- df %>% gather(key = 'type', value = 'value', train:pred_test)
(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 6.662725

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

ARIMA vs. LSTM, Round 2:ARIMA vs. LSTM, Round 2:
Trend-only dataset, testTrend-only dataset, test

data in-rangedata in-range

Would anything change if the test data wereWould anything change if the test data were
in the range already known by the model?in the range already known by the model?

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 31:50 + rnorm(20, sd =2)
df <- data_frame(time_id = 1:120,
train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test))
df <- df %>% gather(key = 'train_test', value = 'value', -time_id)
ggplot(df, aes(x = time_id, y = value, color = train_test)) + geom_line()

Trend-only dataset, test data in-range: Enter:Trend-only dataset, test data in-range: Enter:
ARIMA (1)ARIMA (1)

set.seed(7777)
trend_train <- 11:110 + rnorm(100, sd = 2)
trend_test <- 31:50 + rnorm(20, sd =2)
fit <- auto.arima(trend_train)
order <- arimaorder(fit)
fit on the test set
refit <- Arima(trend_test, order=order[1:3], seasonal=order[4:6])
predictions <- refit$fitted
(test_rsme <- sqrt(sum((trend_test - predictions)^2)))

[1] 9.629612

Trend-only dataset, test data in-range: Enter:Trend-only dataset, test data in-range: Enter:
ARIMA (2)ARIMA (2)

df <- data_frame(time_id = 1:120,
train = c(trend_train, rep(NA, length(trend_test))),
test = c(rep(NA, length(trend_train)), trend_test),
fitted = c(fit$fitted, rep(NA, length(trend_test))),
preds = c(rep(NA, length(trend_train)), predictions))

df <- df %>% gather(key = 'type', value = 'value', train:preds)
ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Trend-only dataset, test data in-range: Enter:Trend-only dataset, test data in-range: Enter:
LSTM (no differencing)LSTM (no differencing)

(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps) - pred_test)^2)))

[1] 9.254975

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Does it get even better with differencing?Does it get even better with differencing?
(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 6.394894

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

And with relative differencing?And with relative differencing?
(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 7.491432

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Finally, what about both differencing andFinally, what about both differencing and
normalizing?normalizing?

(test_rsme <- sqrt(sum((tail(trend_test,length(trend_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 6.710867

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

ARIMA vs. LSTM, Round 3:ARIMA vs. LSTM, Round 3:
seasonal-only datasetseasonal-only dataset

Seasonal-only datasetSeasonal-only dataset

set.seed(7777)
seasonal_train <- rep(1:7, times = 13) + rnorm(91, sd=0.2)
seasonal_test <- rep(1:7, times = 3) + rnorm(21, sd=0.2)
df <- data_frame(time_id = 1:112,
train = c(seasonal_train, rep(NA, length(seasonal_test))),
test = c(rep(NA, length(seasonal_train)), seasonal_test))
df <- df %>% gather(key = 'train_test', value = 'value', -time_id)
ggplot(df, aes(x = time_id, y = value, color = train_test)) + geom_line()

Seasonal-only dataset: Enter: ARIMA (1)Seasonal-only dataset: Enter: ARIMA (1)

set.seed(7777)
seasonal_train <- rep(1:7, times = 13) + rnorm(91, sd=0.2)
seasonal_test <- rep(1:7, times = 3) + rnorm(21, sd=0.2)
h <- 1
n <- length(seasonal_test) - h + 1
fit <- auto.arima(seasonal_train)
order <- arimaorder(fit)
refit <- Arima(seasonal_test, order=order[1:3], seasonal=order[4:6])
predictions <- refit$fitted
(test_rsme <- sqrt(sum((seasonal_test - predictions)^2)))

[1] 4.136755

Seasonal-only dataset: enter: ARIMA (2)Seasonal-only dataset: enter: ARIMA (2)
df <- data_frame(time_id = 1:112,
train = c(seasonal_train, rep(NA, length(seasonal_test))),
test = c(rep(NA, length(seasonal_train)), seasonal_test),
fitted = c(fit$fitted, rep(NA, length(seasonal_test))),
preds = c(rep(NA, length(seasonal_train)), predictions))

df <- df %>% gather(key = 'type', value = 'value', train:preds)
ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Seasonal-only dataset: Enter: LSTM (no dif‐Seasonal-only dataset: Enter: LSTM (no dif‐
ferencing)ferencing)

(test_rsme <- sqrt(sum((tail(seasonal_test,length(seasonal_test) - lstm_num_timesteps) -
pred_test)^2)))

[1] 0.6890056

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Does it get even better with differencing?Does it get even better with differencing?
(How could it ;-))(How could it ;-))

(test_rsme <- sqrt(sum((tail(seasonal_test,length(seasonal_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 1.005745

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Or with relative differencing (for complete‐Or with relative differencing (for complete‐
ness' sake)?ness' sake)?

(test_rsme <- sqrt(sum((tail(seasonal_test,length(seasonal_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 0.5890867

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Finally, what about both differencing andFinally, what about both differencing and
normalizingnormalizing

(test_rsme <- sqrt(sum((tail(seasonal_test,length(seasonal_test) - lstm_num_timesteps - 1) -
pred_test_undiff)^2)))

[1] 1.064543

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

Benchmark: Remarks and conclusionsBenchmark: Remarks and conclusions

We've used a very basic setup for the LSTM

just one layer

no experiments with number of units, optimization routines,
activation functions…

no use of dropout, regularization, weight decay…

not making use of Keras stateful LSTM

We've only compared both methods on a rolling forecast (not
forecasting several periods into the future)

Aside (1): Stateful RNNs in KerasAside (1): Stateful RNNs in Keras

With stateful RNNs, states computed for the samples in one
batch will be reused as initial states for the respective samples in
the next batch

“Makes sense” for a time series, as long as the data is
reformatted or batch_size=1 is used

Presupposes batches arriving in the same order in every epoch
(set shuffle = False)

Not currently implemented in KerasR - time for some Python…

Demo: Stateful LSTM inDemo: Stateful LSTM in
KerasKeras

Aside (2): Multi-step-ahead forecasts inAside (2): Multi-step-ahead forecasts in
KerasKeras

Multi-step-ahead forecasts using LSTM can be done in a number
of ways:

build predictions on earlier predictions (“low end”)

seq2seq architecture (“high end”, not currently available out
of the box in Keras)

using TimeDistributed layer (not currently implemented in
KerasR)

Demo: Multi-step aheadDemo: Multi-step ahead
forecasting in Keras usingforecasting in Keras using

TimeDistributedTimeDistributed

Finally...Finally...

Forecasting internet trafficForecasting internet traffic
using LSTMusing LSTM

Here, again, is our time series...Here, again, is our time series...

ggplot(traffic_df, aes(x = hour, y = bits)) + geom_line() + ggtitle("Internet traffic")

Forecasting internet traffic with LSTMForecasting internet traffic with LSTM
We apply first-order differencing and normalize the data.

We choose 7*24=168 for the number of timesteps.

traffic_train <- traffic_df$bits[1:800]
traffic_test <- traffic_df$bits[801:nrow(traffic_df)]

traffic_train_start <- traffic_train[1]
traffic_test_start <- traffic_test[1]

traffic_train_diff <- diff(traffic_train)
traffic_test_diff <- diff(traffic_test)

minval <- min(traffic_train_diff)
maxval <- max(traffic_train_diff)

normalize <- function(vec, min, max) {
(vec-min) / (max-min)

}
denormalize <- function(vec,min,max) {
vec * (max - min) + min

}

traffic_train_diff <- normalize(traffic_train_diff, minval, maxval)
traffic_test_diff <- normalize(traffic_test_diff, minval, maxval)

lstm_num_timesteps <- 7*24

And the results? ... Wow!And the results? ... Wow!

ggplot(df, aes(x = time_id, y = value)) + geom_line(aes(color = type))

The end?The end?

This is more like a beginning

Lots of things to explore…

experiment with parameters, architectures…

experiment with different datasets…

Have fun!

Thanks for your attention!!

