
Deep Learning in Action

Current state of AI

In the early days of artificial intelligence, the field rapidly tackled and
solved problems that are intellectually difficult for human beings but
relatively straightforward for computers - problems that can be
described by a list of formal, mathematical rules. The true challenge
to artificial intelligence proved to be solving the tasks that are easy
for people to perform but hard for people to describe formally
—problems that we solve intuitively, that feel automatic, like
recognizing spoken words or faces in images.

Goodfellow et al. 2016, Deep Learning (http://www.deeplearningbook.org/)

Easy for us. Difficult for computers

object recognition
speech recognition
speech generation
labeling images

Representations matter

Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

Just feed the network the right features?
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What are the correct pixel values for a "bike" feature?
race bike, mountain bike, e-bike?
pixels in the shadow may be much darker
what if bike is mostly obscured by rider standing in front?

Let the network pick the features

... a layer at a time
Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

Deep Learning, 2 ways to think about it

hierarchical feature extraction (start simple, end complex)
function composition (see http://colah.github.io/posts/2015-09-
NN-Types-FP/ (http://colah.github.io/posts/2015-09-NN-Types-FP/))

A Short History of (Deep) Learning

The first wave: cybernetics (1940s - 1960s)

neuroscientific motivation
linear models

McCulloch-Pitts Neuron (MCP, 1943, a.k.a. Logic
Circuit)
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binary output (0 or 1)
neurons may have inhibiting (negative) and excitatory (positive) inputs
each neuron has a threshold that has to be surpassed by the sum of
activations for the neuron to get active (output 1)
if just one input is inhibitory, the neuron will not activate

Source: https://uwaterloo.ca/data-science/sites/ca.data-science/files
/uploads/files/lecture_1_0.pdf (https://uwaterloo.ca/data-science
/sites/ca.data-science/files/uploads/files/lecture_1_0.pdf)

Perceptron (Rosenblatt, 1958): Great
expectations

compute linear combination of inputs
return +1 if result is positive, -1 if result is negative

Source: https://uwaterloo.ca/data-
science/sites/ca.data-science
/files/uploads/files
/lecture_1_0.pdf
(https://uwaterloo.ca/data-science
/sites/ca.data-science/files
/uploads/files/lecture_1_0.pdf)

Minsky & Papert (1969), "Perceptrons": the great
disappointment

Perceptrons can only solve linearly separable problems
Big loss of interest in neural networks

The second wave: Connectionism (1980s,
mid-1990s)

distributed representations
backpropagation gets popular
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The magic ingredient: backpropagation

Several "origins" in different fields, see e.g.

Henry J. Kelley (1960). Gradient theory of optimal flight paths. Ars Journal,
30(10), 947-954.
Arthur E. Bryson (1961, April). A gradient method for optimizing multi-stage
allocation processes. In Proceedings of the Harvard Univ. Symposium on
digital computers and their applications.
Paul Werbos (1974). Beyond regression: New tools for prediction and
analysis in the behavioral sciences. PhD thesis, Harvard University.
Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October
1986). "Learning representations by back-propagating errors". Nature. 323
(6088): 533–536.

Backprop: How could the magic fail?

Only applicable in case of supervised learning
Doesn't scale well to multiple layers (as they thought at the time)
Can converge to poor local minima (as they thought at the time)

The third wave: Deep Learning

everything starts with: Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
fast learning algorithm for deep belief nets. Neural computation, 18(7),
1527-1554.
deep neural networks can be trained efficiently, if the weights are initialized
intelligently
return of backpropagation

The architectures en vogue now (CNN, RNN,
LSTM...) have mostly been around since the
1980s/1990s.

So why the hype success now?

Big data
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It is true that some skill is required to get good performance from a
deep learning algorithm. Fortunately, the amount of skill required
reduces as the amount of training data increases. The learning
algorithms reaching human performance on complex tasks today are
nearly identical to the learning algorithms that struggled to solve toy
problems in the 1980s [...].

Goodfellow et al. 2016, Deep Learning (http://www.deeplearningbook.org/)

Dataset size - rule of thumb

As of 2016, a rough rule of thumb is that a supervised deep learning
algorithm will generally achieve acceptable performance with around
5,000 labeled examples per category, and will match or exceed
human performance when trained with a dataset containing at least
10 million labeled examples.

Goodfellow et al. 2016, Deep Learning (http://www.deeplearningbook.org/)

Big models

thanks to faster/better

hardware (CPUs, GPUs)
network infrastructure
software implementations

Since the introduction of hidden units, artificial neural networks have
doubled in size roughly every 2.4 years.

Goodfellow et al. 2016, Deep Learning (http://www.deeplearningbook.org/)

Big impact
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deep networks consistently win prestigious competitions (e.g., ImageNet)
deep learning solves increasingly complex problems (e.g., sequence-
to-sequence learning)
deep learning has started to fuel other research areas

and most importantly: Deep learning is highly profitable

Deep learning is now used by many top technology companies
including Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe,
Netflix, NVIDIA and NEC.

Goodfellow et al. 2016, Deep Learning (http://www.deeplearningbook.org/)

Deep Learning Architectures

Feedforward Deep Neural Network

Source: https://uwaterloo.ca/data-
science/sites/ca.data-science
/files/uploads/files
/lecture_1_0.pdf
(https://uwaterloo.ca/data-science
/sites/ca.data-science/files
/uploads/files/lecture_1_0.pdf)

Multi-layer Perceptron (MLP)

Caveat (terminology-related)
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So “multi-layer” neural networks do not use the perceptron learning
procedure.

They should never have been called multi-layer perceptrons.

Geoffrey Hinton, Neural Networks for Machine Learning Lec. 3
(http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec3.pdf)

What people mean by MLP is just a deep feedforward neural network.

Why hidden layers?

Learning XOR

We want to predict

0 from [0,0]
0 from [1,1]
1 from [0,1]
1 from [1,0]

Trying a linear model

with Mean Squared Error cost (MSE), this leads to: 
mapping every point to 0.5!

Introduce hidden layer

f (x;w, b) = w + bxT

w = 0, b = 0.5
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Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

Calculation with hidden layer

Design matrix: 

Parameters: , , 

Input to hidden layer: , add  to every row ==>

Which gives us...

f (x;W, c,w, b) = ( x + c) + bwT WT
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Introducing nonlinearity

Output of rectified linear transformation: 

The remaining hidden-to-output
transformation is linear, but the
classes are already linearly
separable.

How to train a deep network (1): Gradient
Descent

Optimization

Like other machine learning algorithms, neural networks learn by
minimizing a cost function.
Cost functions in neural networks normally are not convex and so, cannot
be optimized in closed form.
The solution is to do gradient descent.

Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

Local minima

f (x;W, c,w, b) = max(0, x + c) + bwT WT
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Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

Closed-form vs. gradient descent optimization by
example: Least Squares

Minimize squared error 
Closed form: solve normal equations

Alternatively, follow the gradient: 

   
Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

This gives us a way to train one weight
matrix.
How about a net with several layers?

How to train a deep network (2):
Backpropagation

Who else to ask but Geoff Hinton...

f (x) = ||X − y|β ̂  |22
= ( X yβ ̂  XT )−1XT

f (x) = X − y∇x XT β ̂  XT
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Source: Geoffrey Hinton, Neural
Networks for Machine Learning
Lec. 3 (http://www.cs.toronto.edu
/~tijmen/csc321/slides
/lecture_slides_lec3.pdf)

The mechanics of backprop

basically, just the chain rule: 

chained over several layers:  
Source: https://colah.github.io
/posts/2015-08-Backprop/
(https://colah.github.io/posts
/2015-08-Backprop/)

Backprop example: logistic neuron

   
Source: Geoffrey Hinton, Neural
Networks for Machine Learning
Lec. 3 (http://www.cs.toronto.edu
/~tijmen/csc321/slides
/lecture_slides_lec3.pdf)

Decisions (1): Which loss function should I
choose?

=dz
dx

dz
dy

dy

dx
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the loss (or cost) function indicates the cost incurred from false prediction /
misclassification
probably the best-known loss function in machine learning is mean
squared error:

most of the time, in deep learning we use cross entropy:

This is the negative log probability of the right answer.

Decisions (2): Which activation function to
choose?

purpose of activation function: introduce nonlinearity (see above)
for a long time, the sigmoid (logistic) activation function was used a lot:

now rectified linear units (ReLUs) are preferred:

Convolutional Neural Networks

Why Conv Nets?

conventional feedforward networks need equally sized input (images for
example normally aren't!)
convolution operation extracts image features

( − y1
n ∑n y ̂  )2

− log( )∑j tj yj

y = 1
1+e−z

y = max(0, z)
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Source: http://cs231n.github.io/convolutional-networks/ (http://cs231n.github.io
/convolutional-networks/)

The Convolution Operation

Source: http://cs231n.github.io
/convolutional-networks/
(http://cs231n.github.io
/convolutional-networks/) (Live
Demo on website!)

Convolution and cross-correlation

Strictly, the operation shown above (and implemented in most DL libraries)
is not convolution, but cross-correlation
1-dimensional discrete convolution:

2-dimensional convolution:

2-dimensional cross-correlation:

s(t) = (x ∗ w)(t) = x(a)w(t − a)∑a

S(i, j) = I ∗ K(i, j) = I(m, n)K(i − m, j − n)∑m∑n

S(i, j) = I ∗ K(i, j) = I(i + m, j + n)K(m, n)∑m∑n
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Octave demo

A = [1,2,3;4,5,6;7,8,9] # input "image"
# padded input matrix, for easier visualization
A_padded = [zeros(1,size(A,2)+2); [zeros(size(A,1),1)
, A, zeros(size(A,1),1)]; zeros(1,size(A,2)+2)]
B = [1,0;0,0] # kernel

# real convolution
C_full = conv2(A,B,'full') # default
C_same = conv2(A,B,'same') 
C_valid = conv2(A,B,'valid')

# cross-correlation
XC = xcorr2(A,B)

Gimp demo

Edge enhance: , edge detect: 

Blur: , sharpen: 

see: https://docs.gimp.org/en/plug-in-convmatrix.html (https://docs.gimp.org/en/plug-
in-convmatrix.html)

Language modeling and word vectors

Language modeling
predict next word given preceding ones
based on statistical properties of the distribution of sequences of words
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Distributional hypothesis: linguistic items with
similar distributions have similar meanings

n-gram/count-based (e.g., Latent Semantic Analysis)
predictive (neural network language models, e.g., word2vec)

ngram-based

choose ngram-size n
estimate the probability  by ignoring
context beyond n−1 words and dividing by the count of all given words up
till 
e.g., with bigrams: 

neural network example (Bengio et al 2001,
Bengio et al 2003)

choose a context size n, as in ngrams
map each word  in the  - word context to an associated
d-dimensional feature vector 
predict next word using standard NN architecture with tanh (hidden layer)
resp. softmax (output layer) activation functions
train network to maximize log likelihood

 using stochastic gradient descent

Word embeddings: word2vec

Mikolov et al (2013a). Efficient estimation of word representations in vector space.
arXiv:1301.3781.

Continuous Bag of Words (CBOW)
Skip-Gram

Continuous Bag of Words

P( | , . . . , , , )wt+1 w1 wt−2 wt−1 wt

wt
P( | = )wt+1 wt

count( , )wt+1 wt
count( )wt

wt−i n − 1
Cwt−i

L(θ) = logP( | , . . . , )∑t wt wt−n+1 wt−1
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Source: Mikolov et al.
2013, Efficient estimation
of word representations in
vector space.
arXiv:1301.3781.

Skip-gram
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Source: Mikolov et al. 2013,
Efficient estimation of word
representations in vector space.
arXiv:1301.3781.

Semantic & syntactic relationships

Source: Mikolov et al. 2013, Efficient estimation of word representations in vector
space. arXiv:1301.3781.
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word2vec visualizations

Source:

https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html
(https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html)

Recurrent neural networks (RNNs)

Why have recursion ?

cannot process sequential data with "normal" feedforward networks
in NLP, the n-gram approach cannot handle long-term relationships

Jane walked into the room. John walked in too. It was late in the day,
and everyone was walking home after a long day at work. Jane said
hi to ___

(Stanford CS 224D Deep Learning for NLP Lecture Notes
(http://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf))

Two representations of RNNs
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Source: Goodfellow et al. 2016,
Deep Learning

(http://www.deeplearningbook.org/)

The recursion: example code

def rnn_cell(rnn_input, state):
    with tf.variable_scope('rnn_cell', reuse=True):
        W = tf.get_variable('W', [num_classes + state
_size, state_size])
        b = tf.get_variable('b', [state_size], initia
lizer=tf.constant_initializer(0.0))
    return tf.tanh(tf.matmul(tf.concat(1, [rnn_input,
 state]), W) + b)

state = init_state
rnn_outputs = []
for rnn_input in rnn_inputs:
    state = rnn_cell(rnn_input, state) 
    rnn_outputs.append(state)
final_state = rnn_outputs[-1]

from: http://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html (http://r2rt.com
/recurrent-neural-networks-in-tensorflow-i.html)

RNNs in practice: The need to forget

Gated Recurrent Units (GRUs)
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Source: Stanford CS 224D Deep
Learning for NLP Lecture Notes
(http://cs224d.stanford.edu
/lecture_notes
/LectureNotes4.pdf))

Long Short Term Memory (LSTM)

Source: Stanford CS 224D Deep
Learning for NLP Lecture Notes
(http://cs224d.stanford.edu
/lecture_notes
/LectureNotes4.pdf)

GRU vs. LSTM: code example (Tensorflow)

Baseline: Simple RNN Cell
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class BasicRNNCell(RNNCell):
  """The most basic RNN cell."""

  def __init__(self, num_units, input_size=None, acti
vation=tanh):
    self._num_units = num_units
    self._activation = activation

  @property
  def state_size(self):
    return self._num_units

  def __call__(self, inputs, state, scope=None):
    """Most basic RNN: output = new_state = act(W * i
nput + U * state + B)."""
    with vs.variable_scope(scope or "basic_rnn_cell")
:
      output = self._activation(
          _linear([inputs, state], self._num_units, T
rue, scope=scope))
return output, output

GRU vs. LSTM: code example (Tensorflow)

GRU Cell

Deep_Learning_in_Action http://localhost:8888/notebooks/Deep_Learning_i...

21 of 25 12/21/2016 07:57 PM



class GRUCell(RNNCell):
  """Gated Recurrent Unit cell (cf. http://arxiv.org/
abs/1406.1078)."""

  def __call__(self, inputs, state, scope=None):
    """Gated recurrent unit (GRU) with nunits cells."
""
    with vs.variable_scope(scope or "gru_cell"):
      with vs.variable_scope("gates"):  # Reset gate 
and update gate.
        # We start with bias of 1.0 to not reset and 
not update.
        r, u = array_ops.split(value=_linear([inputs,
 state],
                                             2 * self
._num_units,
                                             True,
                                             1.0,
                                             scope=sc
ope),
                               num_or_size_splits=2,
                               axis=1)
        r, u = sigmoid(r), sigmoid(u)

      with vs.variable_scope("candidate"):
        c = self._activation(_linear([inputs, r * sta
te],
                                     self._num_units,
                                     True, scope=scop
e))

      new_h = u * state + (1 - u) * c

return new_h, new_h

GRU vs. LSTM: code example (Tensorflow)

LSTM Cell
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class BasicLSTMCell(RNNCell):

  def __call__(self, inputs, state, scope=None):
    with vs.variable_scope(scope or "basic_lstm_cell"
):

      c, h = array_ops.split(1, 2, state)
      concat = _linear([inputs, h], 4 * self._num_uni
ts, True, scope=scope)

      # i = input_gate, j = new_input, f = forget_gat
e, o = output_gate
      i, j, f, o = array_ops.split(1, 4, concat)

      new_c = (c * sigmoid(f + self._forget_bias) + s
igmoid(i) * self._activation(j))
      new_h = self._activation(new_c) * sigmoid(o)

      new_state = array_ops.concat_v2([new_c, new_h],
 1)
      return new_h, new_state

Mapping sequences to sequences: seq2seq

Source: Tensorflow seq2seq tutorial (https://www.tensorflow.org/versions/master
/tutorials/seq2seq/index.html)

first RNN encodes the input, second decodes the output
applications: e.g., machine translation - though basically, all sequence-
to-sequence translation!

Combining modes/models example: Images and
Descriptions
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Andrej Karpathy, Li Fei-Fei: Deep Visual-Semantic Alignments for
Generating Image Descriptions (http://cs.stanford.edu/people/karpathy
/cvpr2015.pdf)
combining CNNs, bidirectional RNNs, and multimodal embeddings
Demo (http://cs.stanford.edu/people/karpathy/deepimagesent
/rankingdemo/)

Source: Deep Visual-Semantic
Alignments for Generating Image
Descriptions (http://cs.stanford.edu/people
/karpathy/cvpr2015.pdf)

Tensorflow Demo: Generating text

What is TensorFlow?

"If you can express your computation as a data flow graph, you can
use TensorFlow."

Source: www.tensorflow.org (https://www.tensorflow.org/)

represent computations as graphs
nodes are operations
edges are Tensors (multidimensional matrices) input
to/output from operations
to make anything happen, execute the graph in a
Session
a Session places and runs a graph on a Device (GPU,
CPU)

Basic TensorFlow workflow
demo (tf_workflow.ipynb)
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Let's generate some text!
char-rnn demo

(based on https://github.com/sherjilozair/char-rnn-tensorflow (https://github.com
/sherjilozair/char-rnn-tensorflow))

Questions? Thank you!
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