Object-Relational Mapping Tools

.. let’s talk to each other!

Trivadis
makes IT
gasier.

ﬁLil_s_\._.‘

" B BN I |
BASEL * BERN = BRUGG * DUSSELDORF = FRANKFURT A.M. * FREIBURG I.BR. = GENEVA t r I va I S

HAMBURG = COPENHAGEN = LAUSANNE = MUNICH = STUTTGART = VIENNA = ZURICH makes IT easier. " BN

B Agenda

Bl O/R Mappers — what, why, how
B The “Object-Relational Impedance Mismatch”
B Fetching Data

trivadis

2 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B Love - Hate: What People Say About O/R Mapping

“The Vietnam of Computer Science”
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

“ORM hate”
http://java.dzone.com/articles/martin-fowler-orm-hate

“No more need for ORMs”
http://blog.jooq.org/2014/04/11/java-8-friday-no-more-need-for-orms/

“ORM haters don’t get it”
http://techblog.bozho.net/orm-haters-dont-get-it/

trivadis

3 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://java.dzone.com/articles/martin-fowler-orm-hate
https://3c.gmx.net/mail/client/dereferrer?redirectUrl=http://blog.jooq.org/2014/04/11/java-8-friday-no-more-need-for-orms/
http://techblog.bozho.net/orm-haters-dont-get-it/

B What is an O/R Mapper?

B “Translation service” between data structures in application code (objects, in OOP)
and tuples in a relational database

B Typically part of a persistence framework that offers additional functionality like
lifecycle management, transaction handling, caching, connection pooling, validation,
etc.

M At its simplest, an O/R Mapper might map a database table directly to an application
object (Active Record)

trivadis

4 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Why Should You Care?

B Developer: Because you want good performance
B Database administrator: Because you want good performance
- With or without an ORM, tuning application SQL is not just “SQL Tuning”

- Application processing logic decides what is retrieved from the database, and
when

- As a DBA, you would normally just catch a glimpse of this logic, e.g. by tracing

- Applications using documented ORMs may even be more accessible to external
diagnosis and consulting (as opposed to in-house frameworks)

trivadis

5 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B Scope and Purpose

B Focus on
- Essential challenges of O/R mapping
- Fetch / SELECT performance considerations

B Help understanding of what ORMs do, as a prerequisite to achieving optimal
performance

B Using Java and Hibernate as an example of an O/R mapping framework

trivadis

6 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Do It Yourself — Plain JDBC

String getEmployeeByCity = "select employee id, firstname, lastname from emplc
String getTaskByEmployeeld = "select name, description, status from task wher
PreparedStatement employeaeStmt = conn.prepareStatement (getEmployeaeByCity) ;
PreparedStatement taskStmt = conn.prepareStatement(getTaskByEmployeeld) ;

List<Employee> employees = new ArraylList<=>();
ResultSet rsetl = employeeStmt.executeQuery();

while (rsetl.next()) {
Employee employee = new Employee();
employee.setFirstname(rsetl.getString(2));
employee.setlastname(rsetl.getString(3));
List<Task= tasks = new ArrayList==();
taskStmt.setInt(1l, rsetl.getlnt(l));
ResultSet rset2 = taskStmt.executeQuery();

while (rsetZ.next()) {
Task task = new Task();
task.setMame(rset2.getString(l));
task.setDescription(rset2.getString(2));
task.setStatus(rset2 . getString(3));
tasks.add(task) ;

rsetZ.close() ;
employee.setTasks(tasks) ;
employees.add(employee) ;

rsetl.close() ;
taskStmt.closel();
employeeStmt.close();
taskStmt.closel() ;

riva

makes IT easier.

dis

B ORM Example - Hibernate

B The same with Hibernate, using JPQL

List<Employee= employeas = em.createQuery('select & from Employee e join fetch e.tasks").
getResultlList();

B The same with Hibernate, using the Criteria API

final CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Employee= criteria = cb.createQuery(Employee.class);
Foot<Employee= from = criteria.from(Employee.class);

from. fetch({"tasks"};

List<Employee= employees = em.createfuery(criteria) .getResultlist();

B If we were searchina for a snecific emnlovee (and possibly her tasks)

Employee employee = em.find(Employee.class, employeeld);

trivadis

8 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B ORM Example: Some Basic Mappings

B @Table (name =<...>)
B @OneToMany (<...>)
B @ManyToOne (<...>)

@Entity
@Table(name = "TASK")
public class Task implements Serializable {

@ld

@Basic(optional = false)
@Column{name = "TASK ID")
private BigDecimal taskId;

@JoinColumn({name =
@ManyToOne(fetch
private Employee

FetchType.LAZY)
employee;

@Entity
@Table(name = "EMPLOYEE")
public class Employee implements Serializable {

@ld

@Basic(optional = false)
@Column{name = "EMPLOYEE ID")
private BigDecimal employeeld;

@0neToMany (mappedBy = "employes",
private Collection=Task= tasks;

fetch = FetchType.LASY)

"EMPLOYEE ID", referencedColumnMame = "EMFLOYEE ID", nullable=false)

9 9/11/2015

Object-Relational Mapping Tools ...let's talk to each other!

trivadis

makes IT easier. E E N

B Agenda

Bl O/R Mappers — what, why, how
B The “Object-Relational Impedance Mismatch”
B Fetching Data

trivadis

10 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B The “Object-Relational Impedance Mismatch”

M In all but the simplest applications, 1 table <-> 1 class mappings don’t necessarily fit
all cases

B More importantly, the mechanics of data retrieval are fundamentally different in OOP
vs. relational databases / SQL

B Conceptual / theoretical mismatch may easily transform into real world performance
issues

trivadis

11 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B The “Object-Relational Impedance Mismatch”

Inheritance (IS-A relationships)

Supertype

String

commonFeature :

Subtypel

Subtype?2

specialFeaturel : String

q

specialFeature2 : String

—

trivadis

12 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Mapping Inheritance

B Strategy No. 1: table per concrete class

KEY.SUBTYPEL KEY.SUBTYPE2
P *ID MUMEBER P ¥ ID MUMEER
COMMOM_FEATURE WARCHARZ (20 BYTE) COMMOM_FEATURE WARCHARZ (20 BYTE)
SPECIAL FEATURE1 WARCHARZ |20 BYTE) SPECIAL FEATUREZ WARCHARZ (20 BYTE)
&= SUBTYPEL_PK (ID) = SUBTYPEZ_PK (ID)

[]1 No table corresponding to the superclass
- Cannot define foreign key constraint against supertype as a whole

- Performance depends on what data are needed

trivadis

13 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. E NN

B Mapping Inheritance

B Strategy No. 1: table per concrete class

select stl from subtypel stl select id, common_feature, special_featurel from
subtypel

select st from supertype st select id, common_feature, special featurel from
subtypel

selectid, common_feature, special_feature2 from
subtype?

[] Queries against a single subclass are unproblematic
- Query against the superclass needs SELECT against both subclass tables
- May be implemented using a UNION instead of several SELECTs

14 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Mapping Inheritance

15

B Strategy No. 2: table per class hierarchy

KEY.ALLTYPES

1D MUMEBER

TYPE_TWPE WARCHARZ (30 BYTE)
COMMOM_FEATURE WARCHARZ (30 BYTE)
SPECIAL_FEATUREL WARCHARZ (30 BYTE)
SPECIAL_FEATUREZ WARCHARZ (30 BYTE)

[] Discriminator column designates corresponding object type
- Nightmare for data integrity (fields must be NULLABLE)

- Performance-wise, probably best, most of the time

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other!

riva

makes IT easier.

dis

B Mapping Inheritance

16

B Strategy No. 2: table per class hierarchy

select stl from subtypel stl select id, common_feature, special_featurel
from alltypes where type_type = ‘SUBTYPEL’

select id, common_feature, special featurel,

select st from supertype st
special_feature2 from alltypes

- Index on discriminator column may speed up queries against subtype

= Instead of an explicit discriminator column, some ORMs may allow using NOT NULL
checks (CASE WHEN special_feature IS NOT NULL THEN ...)

- Despite any performance gains, will probably be loathed by most lBAs for its d I S

denormalized design ;-)

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Mapping Inheritance

B Strategy No. 3: table per sub- and superclass |5 B

SPECIAL_FEATUREL WVARCHARZ(20EYTE)
= SUBTYFEL_PK (ID)
E‘iSUEITYPEl_SUPEF‘.TYPE_FK[ID]

[] Sub- and superclass linked by foreign key j[

[Forelgn key constraints against supertype EY SUPERTYPE
) P *ID NUMBER
are pOSS|b|e COMMON_FEATURE VARCHAR2 (30 BYTE)
&= SUPERTYPE_FK (ID)
[] Creating new subtype takes two inserts l

KEY.SUBTYPE2

FF* 1D MUMEER
SPECIAL_FEATUREZ WARCHARZ (20 BYTE)

= SUBTYPEZ_PK (ID)
3 SUBTYPE2_SUPERTYPE_FK (ID)

trivadis

makes IT easier. E E N

B Mapping Inheritance

18

B Strategy No. 3: table per sub- and superclass

select id, common_feature, special_featurel

select stl from subtypel stl
from subtypel join supertype using (id)

select s.*, sl1.*, s2.*, case when sl.id is not null
then 1 when s2.id is not null then 2 else 0 end

from supertype s left join subtypel sl on
(s.id=s1l.id) left join subype2 on (s.id=s2.id)

select st from supertype st

- Uses inner join for query against subtype, outer join for query against supertype

trivadis

makes IT easier. E BN

- May quickly become catastrophic for performance

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other!

B Mapping Inheritance

B No strategy is universally best

B The most adequate mapping will depend on the depth of the class hierarchy and
actual data usage in the application

B E.g., if only queries against subtypes (like “select st1 from subtypel st1”) are issued,
the table per concrete class strategy is optimal

trivadis

19 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B The “Object-Relational Impedance Mismatch”

Granularity

KEY.EMPLOYEE
F * EMFLOYEE_ID MNUMEER

FIRSTHAME WARCHARZ (30 BYTE)
LASTHMAME WARCHARZ (20 BYTE)
HIRE_DATE DATE

STREET WARCHARZ (100 BYTE)
STREETMO MUMEBER

ZIP MNUMEER

CITY WARCHARZ (100 BYTE)

@ EMPLOYEE_ID_PK (EMPLOYEE_ID)
& EMPLOYEE_ID_PK (EMPLOYEE_ID)

trivadis

makes IT easier. E E N

B Granularity

21

B In object-oriented programming, an Employee class does not contain fields like street

or city

B Instead, an Employee has an Address (HAS-A relationship):

Employee

firstName : String
lastName : String
hireDate : String

>

B What does this mean for the persistence framework?

9/11/2015

address

Address

street : String
streetNo : Integer
Zip : Integer
city : String

Object-Relational Mapping Tools ...let's talk to each other!

riva

makes IT easier.

dis

B Granularity

22

B There are two kinds of objects, entities and value types

M Value types have no independent lifecycle

B Instead, they are persisted when the owning class is persisted

B This equally applies to built-in language types like java.lang.Integer

B No need to have same granularity on the database side (thus avoiding performance
impact of excessive joins)

B This is more of a thing to keep in mind when doing application design than an
insurmountable problem

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B The “Object-Relational Impedance Mismatch”

23

Object Identity

Employee

firstName : String
lastName : String
hireDate : String

Address

KEY.EMPLOYEE

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other!

street : String
streetNo : Integer

Zip
city

: Integer
: String

F * EMFPLOYEE_ID MNUMEER

FIRSTHAME WARCHARZ (20 BYTE)
LASTHMAME WARCHARZ (30 BYTE)
HIRE_DATE DATE

STREET WARCHARZ (100 BYTE)
STREETMO MNUMEER

ZIP HUMEBER

CITY WARCHARZ (100 BYTE)

Z= EMPLOYEE_|ID_PK (EMPLOYEE_ID)

¢ EMPLOYEE_ID_PK (EMPLOYEE_ID)

trivadis

makes IT easier. E E N

B Object Identity

24

B In Java, object identity and object equality are distinct concepts

M If two non-identical objects refer to the same row in the database, data corruption
may occur

B The persistence context has to make sure this does not happen

B Again, this is a manageable challenge

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B The “Object-Relational Impedance Mismatch”

Directionality

Employee

projects : List<Project

V

Project

members : List<Employee

. N

trivadis

25 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Directionality

M In the database, associations may be freely created “on the fly” by joining arbitrary
relations (independent of foreign key dependencies)

In Java, associations are directed

Associations may be
- Unidirectional: need e.g. item.getImages(), but not image.getItem()
- Bidirectional: need e.g. project.getTasks() as well as task.getProject()

B If a bidirectional association is many-to-many in both directions (an employee has
many projects, a project is worked on by many employees), a mapping table is
needed

trivadis

26 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

27

Directionality

KEY.PROJECT_MEMBER

B Table mapping projects and employees: e Ry
PF* EMPLOYEE_ID MNUMEER

BEGIM_DATE DATE

EMD_DATE DATE

= PROJECT_ID_EMPLOYEE_ID_PK (PROJECT_ID, EMPLOYEE_ID)

EMFLOYEE_ID_FK (EMFLOVEE_ID)
FROJECT_ID_FK (PROJECT_ID)

¢ PROJECT_ID_EMPLOYEE_ID_PK (FROJECT_ID, EMFLOYEE_ID)

M If the mapping table does not contain any additional columns, this results in a nice
and clean design on the Java side:

: @Entity
BENtity - @Table(name = "EMPLOYEE")
@Table(name = "PROJECT") o @org.hibernate.annotations.BatchSize(size = 1)
oublic class Project implements Serializable { public class Employee implements Serializable {
@MaﬂyTOManyﬁcascade = CascadeType.PERSIST] @ManyTom‘any(mappedBy = ”emplo'}rees“
@JoinTable(name = "PROJECT_MEMBER", private Set<Project> projects = new HashSet<=>();
joinColumns = @JoinColumniname = "PROJECT ID")
inverseJoinColumns = @JoinColumn({name = "EMPLOYEE ID")
)
private Set<Employee= employees = new HashSet==();
HE E B I |
9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. E NN

B Directionality

B Often, mapping tables will contain additional information (like e.g., begin_date and
end_date)

B In this case, an additional class (e.g., ProjectMember) will have to be created on the
Java side, effectively messing up the design

B AFAIK, there is no aesthetically pleasing solution to this

trivadis

28 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B The “Object-Relational Impedance Mismatch”

Navigation

employee.getTasks() .iterator() .next() .getName() |:>

trivadis

makes IT easier. E E N

B Navigation

30

M In Java, data is retrieved by “walking the object network”

B Naively following the same strategy in the database will lead to disastrous
performance

B Extreme (but not unseen, esp. in handwritten frameworks) example:
employee.getTasks().size(), if no care is taken, will fetch all the employee’s tasks

from the database just to count them!

M In any case, what data you fetch from the database, and how you fetch it, is the all-
important question when using an ORM

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

B Agenda

31

Bl O/R Mappers — what, why, how

B The “Object-Relational Impedance Mismatch”
B Fetching Data

9/11/2015

Object-Relational Mapping Tools ...let's talk to each other!

trivadis

makes IT easier. E BN

B Fetch what? — The Fetch Plan

B When asked to retrieve a specific employee, the framework might
- query just the employee table to retrieve first name, last name, etc.

- additionally query the task table, in preparation for any upcoming (will it?)
employee.getTasks()

- additionally, retrieve the projects these tasks belong to, in preparation for any
upcoming (will it?) task.getProject()

- Additionally, query ... (And so forth, up to a configurable limit.)

B The decision what part of the object graph to retrieve is called the fetch plan.

trivadis

32 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Lazy Fetch

B With lazy fetching, only the employee table is queried here:
B Code:

Employee employee = em.find(Employee.class, employeeld);
out.println{"Employes " + employeeld + ": " + employee.getlLastname());

B SQL (Hibernate):

select employee@ .EMPLOYEE ID as EMPLOYEE ID1 8 0 , employee@ .CITY as CITYZ 0 0 ,
employee® .FIRSTMAME as FIRSTHWAMES @ @ , employee® .HIRE DATE as HIRE DATE4 0 0 ,
employee@ .LASTMAME as LASTNAMES G 0 , employee@ .STREET as STREET6E @ @ ,
employee® .STREETNO as STREETWO7 0 @ , employee@ .ZIP as ZIP8 0 0

from EMPLOYEE employee@ where employee® .EMPLOYEE ID=:1|

trivadis

33 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Lazy Fetch

B Let's assume we are going to process the employee’s tasks next:
M Code:

Employee employee = em.find(Employee.class, employeeld);
out.println({"Employes " + employeeld + ": " + employee.getlLastnameal));

Set<Task= tasks = employee.getTasks();
tasks.forkEach({out::printlnj;

Nl -
. select employee@ .EMPLOYEE ID as EMPLOYEE ID1 8 @ , employee@ .CITY as CITYZ 0 0 ,

=...=

from EMPLOYEE employeel@ where employeel .EMPLOYEE ID=:1

select tasks@ .EMPLOYEE ID as EMPLOYEE ID5 @ 0 , tasksG_.TASK ID as TASK_ID1 3 0,

tasksO .TASK ID as TASK ID1 3 1 , tasks® .DESCRIPTION as DESCRIPTIONZ 3 1 ,

tasksd .EMPLOYEE ID as EMPLOYEE ID5 3 1 , tasksO .NAME as MAME3 3 1 ,

tasks@ .PROJECT ID as PROJECT ID6 3 1 , tasks@ .STATUS as STATUS4 3 1

from TASK tasks® where tasks® .EMPLOYEE ID=:1 |

trivadis

34 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. E NN

B Lazy Fetch

35

B We were fetching just one employee here. What would happen had we asked for a
set of employees?

{t PAR... |{} EXE... |{} SQL_TEXT
160 100select tasks® ,EMPLOYEE ID as EMPLOYEE IDS 0 0 , tasksO .TASK ID as TASK ID1 3 0 , tasks® .TASK ID as TASK ID1 3 1 , tasks0_
1 lselect employeeG_.EMPLOYEE_ID as EMPLOYEE_ID1 0O_, employeed .CITY as CITYZ_0_, employeed_.FIRSTHMAME as FIRSTHWAME3 O , employ

B The query against task is executed once for every employee...

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Lazy Fetch

B Let's assume we were not interested in just any tasks, but only those that belong to
“CAT 1” projects:

for (Employee employee : employees) {

Set=Task= tasks = employee.getTasks();
Set=Task= catl = tasks.stream().filter(t -= t.getProject().getName() .startsWith({"CATI")) .collect({taSet()];

catl.forEach{out:::printlnj ;

B For every distinct project_id obtained from the tasks query, we query the project
table to find the names:

{i PaRs... [{ EXE... |{} soL_TEXT
tasks0_,TASK_ID as TASK_IDL_3 0_, tasksO_.TASK_ID as TASK_ID1_3_1_,

100 100 select tasks®_.EMPLOYEE_ID as EMPLOYEE_IDS 0 O,
38select project@ ,PROJECT_ID as PROJECT_ID1_2_©_, project@ . CREATED as CREATED2 2 0 , project@_,DESCRIPTION as DESCRIPTIONZ 2_0

38
1 1select employee@_.EMPLOYEE ID as EMPLOYEE_ID1 O , employeel .CITY as CITY2 0_, employee®_.FIRSTMAME as FIRSTNAME3 0_, employeel

tasks0O_. Dt

HE E B I ||
36 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Then+ 1 SELECTs Problem

B This is commonly called the “n + 1 SELECTSs” problem
B When navigating the object graph with lazy fetching the framework will issue

- 1 query against the base object’s table, n being the resulting number of distinct
rows, plus

- n queries against the associated object’s table

B May result in an enormous number of network roundtrips

trivadis

37 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Eager Fetch

B Assuming the Employee class was configured to fetch its tasks eagerly, for this .

Employee employee = em.find(Employee.class, employeeld);
out.println("Employee " + employeeld + ": " + employee.getlLastname(]);

Set<Task=> tasks = employee.getTasks() ;
tasks.forEach(out::println) ;

B ... as well as this code ...

Employee employee = em.find(Employee.class, employeeld) ;
out.println("Employee " + employeeld + ": " + employee.getlLastname(]);

M ... in the database, we see an outer join to the task table:
select employee@ .EMPLOYEE ID as EMPLOYEE ID1 @ 0@ , employee@ .CITY as CITYZ 0 0 , =...=,

tasksl .TASK ID as TASK ID1 3 1 , tasksl .PROJECT ID as PROJECT ID6 3 2 , <...>
from EMPLOYEE employeed left ocuter join TASK tasksl on employee@ .EMPLOYEE ID=tasksl .EMPLOYEE ID

where employee® .EMPLOYEE ID=:1

trivadis

38 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier.

B Eager Fetch

39

B Assuming that additionally the Task.project field was eager fetched:

B For both the above statements, we now have a three table outer join in the database:

select employee® .EMPLOYEE ID as EMPLOYEE ID1 © @ , employee® .CITY as CITY2 0 0 , =...=

r

tasksl .TASK ID as TASK _ID1 3 1 , tasksl PRDJECT ID as PROJECT ID6 3 2 .

<.,

project? .PROJECT ID as PROJECT ID1 2 3 , project2 .CREATED as CREATEDZ 2 3 , <...=,|

from EMPLOYEE employee@ left outer join TASK tasksl on employeed EMPLDYEE ID=tasksl .EMPLOYEE ID
left outer join PROJECT project? on tasksl PROJECT ID=projectz .PROJECT ID

where employeel .EMPLOYEE ID=:1

B With eager fetching, as soon as an object is touched, the whole connected object

graph is fetched

B Depending on how it is structured, the so called Cartesian Join Problem may appear

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B The Cartesian Join Problem

40

B This Project class has several one-to-many associations that are all eagerly fetched:

@0neToMany(mappedBy = "projectld”, fetch = FetchType.EAGER)
private Set<Image= images;

@0neToMany (mappedBy = "project”,

private Set<Task=> tasks;

fetch = FetchType .EAGER)

B As tasks and images are unrelated, for every project, we fetch all permutations of

tasks and images:

{ PROJECT_ID [t TA.... [\/|{} MAGE_ID |

11
11
11
11
11
11
11
11

o9

g9
100
100
100
1ol
1ol
101

79
158
19
74
158
19
74
158

9/11/2015

Object-Relational Mapping Tools ...let's talk to each other!

riva

makes IT easier.

dis

B The Cartesian Join Problem

B Not a problem with many-to-one associations

B With one-to-many associations, may result in enormous amounts of data transferred
over the network

B All but a small portion of this data will have to be discarded by the framework

B There is nothing to be done about this in the database

trivadis

41 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Lazy vs. Eager Fetch: Questions to Ask

B Whenever | am doing something with object X, will | need X’s Y(s), too?

B This associated object, is it actually a Y (many-to-one or one-to-one) or a collection
of Ys (one-to-many)?

B How large is the connected portion of the object graph involved?

B With either fetch plan, can | make use of non-default fetch strategies?

trivadis

42 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Fetch how? — The Fetch Strategy

M In addition to what part of the object graph to fetch, the framework must decide on
how to access these objects (fetch strategy)

B Available strategies (vendor-dependent) are, e.g.
- Batch prefetching (with a lazy fetch plan)

- subselect prefetching

- breaking up large joins into single selects (with an eager fetch plan)

trivadis

makes IT easier. E BN

43 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other!

B Batch Prefetching

44

B With a lazy fetch plan, batch prefetching may be used to avoid the n+1 SELECTs
problem

B Instead of one select per employee to retrieve her tasks, one select is issued per

accumulated list of employees (IN-LIST):
select tasks(® .EMPLOYEE ID as EMPLOYEE ID5 @ 1 , tasks@ .TASK ID as TASK IDl 3 1 , =...=,

from TASK tasks® where tasks@ .EMPLOYEE ID inm (:1 , :2 , :3, 4, 5, :6, 7, 8, :9, :18)

B Batch size may be configurable (vendor-dependent)
B Turns n+1 SELECTSs into n/<batch size>+1 SELECTs

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Batch Prefetching: Pros and Cons

B Pro: Avoid excessive network roundtrips
B Con: With longer in-lists, an index on the filtering column is less likely to be used

B Net result will depend on various global (network latency ...) and use case specific
(amount of data, goodness of index ...) factors

B Conclusion: test the concrete scenarios!

trivadis

45 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Subselect Prefetching

46

Fetches the associated objects as a whole as soon as the first of them is accessed

Instead of passing an evaluated in-list, the selection is restricted by the same query
that was used to retrieve the base objects:

select tasks(® .EMPLOYEE ID as EMPLOYEE IDS @ 1 , tasks® .TASK ID as TASK ID1 3 1 , =...=,
from TASK tasks® where tasks0 .EMPLOYEE ID in
|(se'Lect employeed .EMPLOYEE ID from EMPLOYEE employeel where employee@ .LASTMNAME like 'S')

Availability varies (vendor-dependent)
Turns n+1 SELECTs into 1+1 SELECTs

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Subselect Prefetching: Pros and Cons

47

B PRO: Reduces network roundtrips to a minimum (with lazy fetch plan)
B PRO: Unlike with batch prefetching, no need to outsmart the system ;-)
B PRO: leaves optimization to the database

B PRO: in theory, possibly the optimal solution — fetch only when needed, and let the
database decide how!

B CON: Is there? There could be - if the database is not able to transform the subselect
into a join [] check!

B Conclusion: Check what is actually going on in the database!

trivadis

9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I I

B Conclusion

B Know what is possible in your ORM

B Check out what is actually sent to the database, AND
B Check with your DBA how it performs!

B (DBAs: don't just curse that ORM ... but advise)

B In a nutshell: let’s talk to each other []

trivadis

48 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. [I B |

Thank youl!
Sigrid Keydana

Tech Event, Sept. 11 2015

P e 5

RO Tivadis
makes IT
easler,

trivadis

49 9/11/2015 Object-Relational Mapping Tools ...let's talk to each other! makes IT easier. = N

	Slide 1
	Agenda
	Love - Hate: What People Say About O/R Mapping
	What is an O/R Mapper?
	Why Should You Care?
	Scope and Purpose
	Do It Yourself – Plain JDBC
	ORM Example - Hibernate
	ORM Example: Some Basic Mappings
	Agenda
	The “Object-Relational Impedance Mismatch”
	The “Object-Relational Impedance Mismatch”
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	The “Object-Relational Impedance Mismatch”
	Granularity
	Granularity
	The “Object-Relational Impedance Mismatch”
	Object Identity
	The “Object-Relational Impedance Mismatch”
	Directionality
	Directionality
	Directionality
	The “Object-Relational Impedance Mismatch”
	Navigation
	Agenda
	Fetch what? – The Fetch Plan
	Lazy Fetch
	Lazy Fetch
	Lazy Fetch
	Lazy Fetch
	The n + 1 SELECTs Problem
	Eager Fetch
	Eager Fetch
	The Cartesian Join Problem
	The Cartesian Join Problem
	Lazy vs. Eager Fetch: Questions to Ask
	Fetch how? – The Fetch Strategy
	Batch Prefetching
	Batch Prefetching: Pros and Cons
	Subselect Prefetching
	Subselect Prefetching: Pros and Cons
	Conclusion
	Slide 49

