
BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA
HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA ZURICH

Object-Relational Mapping Tools

… let’s talk to each other!

Agenda

Object-Relational Mapping Tools …let's talk to each other!2 9/11/2015

O/R Mappers – what, why, how

The “Object-Relational Impedance Mismatch”

Fetching Data

Love - Hate: What People Say About O/R Mapping

Object-Relational Mapping Tools …let's talk to each other!3 9/11/2015

“The Vietnam of Computer Science”
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

“ORM hate”
http://java.dzone.com/articles/martin-fowler-orm-hate

“No more need for ORMs”
http://blog.jooq.org/2014/04/11/java-8-friday-no-more-need-for-orms/

“ORM haters don’t get it”
http://techblog.bozho.net/orm-haters-dont-get-it/

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://java.dzone.com/articles/martin-fowler-orm-hate
https://3c.gmx.net/mail/client/dereferrer?redirectUrl=http://blog.jooq.org/2014/04/11/java-8-friday-no-more-need-for-orms/
http://techblog.bozho.net/orm-haters-dont-get-it/

What is an O/R Mapper?

Object-Relational Mapping Tools …let's talk to each other!4 9/11/2015

“Translation service” between data structures in application code (objects, in OOP)
and tuples in a relational database

Typically part of a persistence framework that offers additional functionality like
lifecycle management, transaction handling, caching, connection pooling, validation,
etc.

At its simplest, an O/R Mapper might map a database table directly to an application
object (Active Record)

Why Should You Care?

Object-Relational Mapping Tools …let's talk to each other!5 9/11/2015

Developer: Because you want good performance

Database administrator: Because you want good performance

– With or without an ORM, tuning application SQL is not just “SQL Tuning”

– Application processing logic decides what is retrieved from the database, and
when

– As a DBA, you would normally just catch a glimpse of this logic, e.g. by tracing

– Applications using documented ORMs may even be more accessible to external
diagnosis and consulting (as opposed to in-house frameworks)

Scope and Purpose

Object-Relational Mapping Tools …let's talk to each other!6 9/11/2015

Focus on

– Essential challenges of O/R mapping

– Fetch / SELECT performance considerations

Help understanding of what ORMs do, as a prerequisite to achieving optimal
performance

Using Java and Hibernate as an example of an O/R mapping framework

Do It Yourself – Plain JDBC

Object-Relational Mapping Tools …let's talk to each other!7 9/11/2015

ORM Example - Hibernate

Object-Relational Mapping Tools …let's talk to each other!8 9/11/2015

The same with Hibernate, using JPQL

The same with Hibernate, using the Criteria API

If we were searching for a specific employee (and possibly her tasks)

ORM Example: Some Basic Mappings

Object-Relational Mapping Tools …let's talk to each other!9 9/11/2015

@Table (name = <…>)

@OneToMany (<…>)

@ManyToOne (<…>)

Agenda

Object-Relational Mapping Tools …let's talk to each other!10 9/11/2015

O/R Mappers – what, why, how

The “Object-Relational Impedance Mismatch”

Fetching Data

The “Object-Relational Impedance Mismatch”

Object-Relational Mapping Tools …let's talk to each other!11 9/11/2015

In all but the simplest applications, 1 table <-> 1 class mappings don’t necessarily fit
all cases

More importantly, the mechanics of data retrieval are fundamentally different in OOP
vs. relational databases / SQL

Conceptual / theoretical mismatch may easily transform into real world performance
issues

The “Object-Relational Impedance Mismatch”

Object-Relational Mapping Tools …let's talk to each other!12 9/11/2015

Inheritance (IS-A relationships)

Supertype

commonFeature :
String

Subtype1

specialFeature1 : String

Subtype2

specialFeature2 : String

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!13 9/11/2015

Strategy No. 1: table per concrete class

 No table corresponding to the superclass

 Cannot define foreign key constraint against supertype as a whole

 Performance depends on what data are needed

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!14 9/11/2015

Strategy No. 1: table per concrete class

 Queries against a single subclass are unproblematic

 Query against the superclass needs SELECT against both subclass tables

 May be implemented using a UNION instead of several SELECTs

JPQL

select st from supertype st

SQL

select id, common_feature, special_feature1 from
subtype1
select id, common_feature, special_feature2 from
subtype2

JPQL

select st1 from subtype1 st1

SQL

select id, common_feature, special_feature1 from
subtype1

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!15 9/11/2015

Strategy No. 2: table per class hierarchy

 Discriminator column designates corresponding object type

 Nightmare for data integrity (fields must be NULLABLE)

 Performance-wise, probably best, most of the time

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!16 9/11/2015

Strategy No. 2: table per class hierarchy

 Index on discriminator column may speed up queries against subtype

 Instead of an explicit discriminator column, some ORMs may allow using NOT NULL
checks (CASE WHEN special_feature IS NOT NULL THEN …)

 Despite any performance gains, will probably be loathed by most DBAs for its
denormalized design ;-)

JPQL

select st from supertype st

SQL

select id, common_feature, special_feature1,
special_feature2 from alltypes

JPQL

select st1 from subtype1 st1

SQL

select id, common_feature, special_feature1
from alltypes where type_type = ‘SUBTYPE1’

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!17 9/11/2015

Strategy No. 3: table per sub- and superclass

 Sub- and superclass linked by foreign key

 Foreign key constraints against supertype

 are possible

 Creating new subtype takes two inserts

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!18 9/11/2015

Strategy No. 3: table per sub- and superclass

 Uses inner join for query against subtype, outer join for query against supertype

 May quickly become catastrophic for performance

JPQL

select st from supertype st

SQL

select s.*, s1.*, s2.*, case when s1.id is not null
then 1 when s2.id is not null then 2 else 0 end
from supertype s left join subtype1 s1 on
(s.id=s1.id) left join subype2 on (s.id=s2.id)

JPQL

select st1 from subtype1 st1

SQL

select id, common_feature, special_feature1
from subtype1 join supertype using (id)

Mapping Inheritance

Object-Relational Mapping Tools …let's talk to each other!19 9/11/2015

No strategy is universally best

The most adequate mapping will depend on the depth of the class hierarchy and
actual data usage in the application

E.g., if only queries against subtypes (like “select st1 from subtype1 st1”) are issued,
the table per concrete class strategy is optimal

The “Object-Relational Impedance Mismatch”

Object-Relational Mapping Tools …let's talk to each other!20 9/11/2015

Granularity

In object-oriented programming, an Employee class does not contain fields like street
or city

Instead, an Employee has an Address (HAS-A relationship):

What does this mean for the persistence framework?

Granularity

Object-Relational Mapping Tools …let's talk to each other!21 9/11/2015

Employee

firstName : String
lastName : String
hireDate : String

street : String
streetNo : Integer
zip : Integer
city : String

Address

address

Granularity

Object-Relational Mapping Tools …let's talk to each other!22 9/11/2015

There are two kinds of objects, entities and value types

Value types have no independent lifecycle

Instead, they are persisted when the owning class is persisted

This equally applies to built-in language types like java.lang.Integer

No need to have same granularity on the database side (thus avoiding performance
impact of excessive joins)

This is more of a thing to keep in mind when doing application design than an
insurmountable problem

The “Object-Relational Impedance Mismatch”

Object-Relational Mapping Tools …let's talk to each other!23 9/11/2015

Object Identity

Employee

firstName : String
lastName : String
hireDate : String

street : String
streetNo : Integer
zip : Integer
city : String

Address

Object Identity

Object-Relational Mapping Tools …let's talk to each other!24 9/11/2015

In Java, object identity and object equality are distinct concepts

If two non-identical objects refer to the same row in the database, data corruption
may occur

The persistence context has to make sure this does not happen

Again, this is a manageable challenge

The “Object-Relational Impedance Mismatch”

Object-Relational Mapping Tools …let's talk to each other!25 9/11/2015

Directionality

Employee

projects : List<Project> members : List<Employee>

Project

Directionality

Object-Relational Mapping Tools …let's talk to each other!26 9/11/2015

In the database, associations may be freely created “on the fly” by joining arbitrary
relations (independent of foreign key dependencies)

In Java, associations are directed

Associations may be

– Unidirectional: need e.g. item.getImages(), but not image.getItem()

– Bidirectional: need e.g. project.getTasks() as well as task.getProject()

If a bidirectional association is many-to-many in both directions (an employee has
many projects, a project is worked on by many employees), a mapping table is
needed

Directionality

Object-Relational Mapping Tools …let's talk to each other!27 9/11/2015

Table mapping projects and employees:

If the mapping table does not contain any additional columns, this results in a nice
and clean design on the Java side:

Directionality

Object-Relational Mapping Tools …let's talk to each other!28 9/11/2015

Often, mapping tables will contain additional information (like e.g., begin_date and
end_date)

In this case, an additional class (e.g., ProjectMember) will have to be created on the
Java side, effectively messing up the design

AFAIK, there is no aesthetically pleasing solution to this

The “Object-Relational Impedance Mismatch”

Object-Relational Mapping Tools …let's talk to each other!29 9/11/2015

Navigation

Navigation

Object-Relational Mapping Tools …let's talk to each other!30 9/11/2015

In Java, data is retrieved by “walking the object network”

Naively following the same strategy in the database will lead to disastrous
performance

Extreme (but not unseen, esp. in handwritten frameworks) example:
employee.getTasks().size(), if no care is taken, will fetch all the employee‘s tasks
from the database just to count them!

In any case, what data you fetch from the database, and how you fetch it, is the all-
important question when using an ORM

Agenda

Object-Relational Mapping Tools …let's talk to each other!31 9/11/2015

O/R Mappers – what, why, how

The “Object-Relational Impedance Mismatch”

Fetching Data

Fetch what? – The Fetch Plan

Object-Relational Mapping Tools …let's talk to each other!32 9/11/2015

When asked to retrieve a specific employee, the framework might

– query just the employee table to retrieve first name, last name, etc.

– additionally query the task table, in preparation for any upcoming (will it?)
employee.getTasks()

– additionally, retrieve the projects these tasks belong to, in preparation for any
upcoming (will it?) task.getProject()

– Additionally, query … (And so forth, up to a configurable limit.)

The decision what part of the object graph to retrieve is called the fetch plan.

Lazy Fetch

Object-Relational Mapping Tools …let's talk to each other!33 9/11/2015

With lazy fetching, only the employee table is queried here:

Code:

SQL (Hibernate):

Lazy Fetch

Object-Relational Mapping Tools …let's talk to each other!34 9/11/2015

Let’s assume we are going to process the employee’s tasks next:

Code:

SQL:

Lazy Fetch

Object-Relational Mapping Tools …let's talk to each other!35 9/11/2015

We were fetching just one employee here. What would happen had we asked for a
set of employees?

The query against task is executed once for every employee…

Lazy Fetch

Object-Relational Mapping Tools …let's talk to each other!36 9/11/2015

Let’s assume we were not interested in just any tasks, but only those that belong to
“CAT 1” projects:

For every distinct project_id obtained from the tasks query, we query the project
table to find the names:

The n + 1 SELECTs Problem

Object-Relational Mapping Tools …let's talk to each other!37 9/11/2015

This is commonly called the “n + 1 SELECTs” problem

When navigating the object graph with lazy fetching the framework will issue

– 1 query against the base object’s table, n being the resulting number of distinct
rows, plus

– n queries against the associated object’s table

May result in an enormous number of network roundtrips

Eager Fetch

Object-Relational Mapping Tools …let's talk to each other!38 9/11/2015

Assuming the Employee class was configured to fetch its tasks eagerly, for this …

… as well as this code …

… in the database, we see an outer join to the task table:

Eager Fetch

Object-Relational Mapping Tools …let's talk to each other!39 9/11/2015

Assuming that additionally the Task.project field was eager fetched:

For both the above statements, we now have a three table outer join in the database:

With eager fetching, as soon as an object is touched, the whole connected object
graph is fetched

Depending on how it is structured, the so called Cartesian Join Problem may appear

The Cartesian Join Problem

Object-Relational Mapping Tools …let's talk to each other!40 9/11/2015

This Project class has several one-to-many associations that are all eagerly fetched:

As tasks and images are unrelated, for every project, we fetch all permutations of
tasks and images:

The Cartesian Join Problem

Object-Relational Mapping Tools …let's talk to each other!41 9/11/2015

Not a problem with many-to-one associations

With one-to-many associations, may result in enormous amounts of data transferred
over the network

All but a small portion of this data will have to be discarded by the framework

There is nothing to be done about this in the database

Lazy vs. Eager Fetch: Questions to Ask

Object-Relational Mapping Tools …let's talk to each other!42 9/11/2015

Whenever I am doing something with object X, will I need X’s Y(s), too?

This associated object, is it actually a Y (many-to-one or one-to-one) or a collection
of Ys (one-to-many)?

How large is the connected portion of the object graph involved?

With either fetch plan, can I make use of non-default fetch strategies?

Fetch how? – The Fetch Strategy

Object-Relational Mapping Tools …let's talk to each other!43 9/11/2015

In addition to what part of the object graph to fetch, the framework must decide on
how to access these objects (fetch strategy)

Available strategies (vendor-dependent) are, e.g.

– Batch prefetching (with a lazy fetch plan)

– subselect prefetching

– breaking up large joins into single selects (with an eager fetch plan)

Batch Prefetching

Object-Relational Mapping Tools …let's talk to each other!44 9/11/2015

With a lazy fetch plan, batch prefetching may be used to avoid the n+1 SELECTs
problem

Instead of one select per employee to retrieve her tasks, one select is issued per
accumulated list of employees (IN-LIST):

Batch size may be configurable (vendor-dependent)

Turns n+1 SELECTs into n/<batch size>+1 SELECTs

Batch Prefetching: Pros and Cons

Object-Relational Mapping Tools …let's talk to each other!45 9/11/2015

Pro: Avoid excessive network roundtrips

Con: With longer in-lists, an index on the filtering column is less likely to be used

Net result will depend on various global (network latency …) and use case specific
(amount of data, goodness of index …) factors

Conclusion: test the concrete scenarios!

Subselect Prefetching

Object-Relational Mapping Tools …let's talk to each other!46 9/11/2015

Fetches the associated objects as a whole as soon as the first of them is accessed

Instead of passing an evaluated in-list, the selection is restricted by the same query
that was used to retrieve the base objects:

Availability varies (vendor-dependent)

Turns n+1 SELECTs into 1+1 SELECTs

Subselect Prefetching: Pros and Cons

Object-Relational Mapping Tools …let's talk to each other!47 9/11/2015

PRO: Reduces network roundtrips to a minimum (with lazy fetch plan)

PRO: Unlike with batch prefetching, no need to outsmart the system ;-)

PRO: leaves optimization to the database

PRO: in theory, possibly the optimal solution – fetch only when needed, and let the
database decide how!

CON: Is there? There could be - if the database is not able to transform the subselect
into a join  check!

Conclusion: Check what is actually going on in the database!

Conclusion

Object-Relational Mapping Tools …let's talk to each other!48 9/11/2015

Know what is possible in your ORM

Check out what is actually sent to the database, AND

Check with your DBA how it performs!

(DBAs: don’t just curse that ORM … but advise)

In a nutshell: let’s talk to each other 

Thank you!
Sigrid Keydana

Tech Event, Sept. 11 2015

9/11/2015 Object-Relational Mapping Tools …let's talk to each other!49

	Slide 1
	Agenda
	Love - Hate: What People Say About O/R Mapping
	What is an O/R Mapper?
	Why Should You Care?
	Scope and Purpose
	Do It Yourself – Plain JDBC
	ORM Example - Hibernate
	ORM Example: Some Basic Mappings
	Agenda
	The “Object-Relational Impedance Mismatch”
	The “Object-Relational Impedance Mismatch”
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	Mapping Inheritance
	The “Object-Relational Impedance Mismatch”
	Granularity
	Granularity
	The “Object-Relational Impedance Mismatch”
	Object Identity
	The “Object-Relational Impedance Mismatch”
	Directionality
	Directionality
	Directionality
	The “Object-Relational Impedance Mismatch”
	Navigation
	Agenda
	Fetch what? – The Fetch Plan
	Lazy Fetch
	Lazy Fetch
	Lazy Fetch
	Lazy Fetch
	The n + 1 SELECTs Problem
	Eager Fetch
	Eager Fetch
	The Cartesian Join Problem
	The Cartesian Join Problem
	Lazy vs. Eager Fetch: Questions to Ask
	Fetch how? – The Fetch Strategy
	Batch Prefetching
	Batch Prefetching: Pros and Cons
	Subselect Prefetching
	Subselect Prefetching: Pros and Cons
	Conclusion
	Slide 49

