If you’re interested, I’ll have a webcast on this as part of the Trivadis tricast series (registration). The talk will be in German though, so I guess some working knowledge of German would be helpful 🙂

Thanks for reading!

Skip to content
# recurrent null

## Data Science, Machine Learning, & diverse IT stuff

#
Month: September 2017

# Automatic Crack Detection – with Deep Learning

# Deep Learning, deeplearning4j and Outlier Detection: Talks at Trivadis Tech Event

On Friday at DOAG Big Data Days, I presented one possible application of deep learning: using deep learning for automatic crack detection – with some background theory, a Keras model trained from scratch, and the use of VGG16 pretrained on Imagenet. The amount of input data really was minimal, and the resulting accuracy, under these circumstances, not bad at all! Here are the slides.

If you’re interested, I’ll have a webcast on this as part of the Trivadis tricast series (registration). The talk will be in German though, so I guess some working knowledge of German would be helpful 🙂

Thanks for reading!

Advertisements

Last weekend, another edition of Trivadis Tech Event took place. As usual, it was great fun and a great source of inspiration.

I had the occasion to talk about deep learning twice: One talk was an intro to DL4J (deeplearning4j), zooming in on a few aspects I’ve found especially nice and useful while trying to provide a general introduction to deep learning at the same time. The audience was great, and the framework really is fun to work with, so this was a totally pleasant experience! Here are the slides, and here’s the example code.

The second talk was a joint session with my colleague Olaf on outlier / anomaly detection. We covered both ML and DL algorithms. For DL, I focused on variational autoencoders, the special challenge being to successfully apply the algorithm to datasets other than MNIST… and especially, datasets with a mix of categorical and continuous variables of different scale. As I say in the habitual “conclusion” slide, I don’t think I’ve arrived at a conclusion yet… any comments / suggestions are very welcome! Here’s the VAE presentation on RPubs, and here on github.

Thanks for reading!