Deep Learning in Action

On Wednesday at Hochschule München, Fakultät für Informatik and Mathematik I presented about Deep Learning (nbviewer, github, pdf).

Mainly concepts (what’s “deep” in Deep Learning, backpropagation, how to optimize …) and architectures (Multi-Layer Perceptron, Convolutional Neural Network, Recurrent Neural Network), but also demos and code examples (mainly using TensorFlow).

It was/is a lot material to cover in 90 minutes, and conceptual understanding / developing intuition was the main point. Of course, there is great online material to make use of, and you’ll see my preferences in the cited sources ;-).

Next year, having covered the basics, I hope to be developing use cases and practical applications showing applicability of Deep Learning even in non-Google-size (resp: Facebook, Baidu, Apple…) environments.
Stay tuned!

R for SQListas (3): Classifying Digits with TensorFlow

Yesterday at PASS Meetup Munich, I talked about R for SQListas – thanks again for your interest and attention guys, it was a very nice evening!
Actually, in addition to the content from that original presentation, which I’ve also covered in two recent blog posts (R for SQListas(1): Welcome to the tidyverse and R for SQListas(2): Forecasting the future), there was a new, third part this time: an introduction to machine learning with R, by example of the most classical of examples: MNIST, with a special focus on using rstudio’s tensorflow package for R.
While I hope I’ll find the time to write a post on this part too, I’m not too sure when this will be, so I’ve uploaded the slides already and added links to the pdf, github repo and publication on rpubs to the Presentations/Papers section. Enjoy!